BigQuery とは

BigQuery は、機械学習、地理空間分析、ビジネス インテリジェンスなどの組み込み機能を使用してデータの管理と分析を支援する、フルマネージドのエンタープライズ データ ウェアハウスです。BigQuery のサーバーレス アーキテクチャにより、SQL クエリを使用して、インフラストラクチャ管理なしで組織の最も大きな課題に対応できます。BigQuery のスケーラブルな分散型分析エンジンを使用すると、数テラバイト、数ペタバイトのデータに対し、数秒もしくは数分でクエリを完了できます。

BigQuery では、データを分析するコンピューティング エンジンとストレージの選択肢を分けることで、柔軟性を最大化します。BigQuery 内にデータを保存して分析することも、BigQuery を使用して外部テーブルのデータを評価することもできます。連携クエリを使用すると、ストリーミングでデータの継続的な更新をサポートしながら、外部ソースからデータを読み取ることができます。BigQuery ML や BI Engine などの強力なツールを使えば、そのデータを分析して把握できます。

BigQuery インターフェースには、Google Cloud Console インターフェースと BigQuery コマンドライン ツールが含まれます。デベロッパーやデータ サイエンティストは、Python、Java、JavaScript、Go などの使い慣れたプログラミング言語でクライアント ライブラリを使用することも、BigQuery の REST API と RPC API でデータを変換、管理することもできます。ODBC ドライバと JDBC ドライバにより、サードパーティのツールやユーティリティなどの既存のアプリケーションとやり取りできるようになります。

データ アナリスト、データ エンジニア、データ ウェアハウス管理者、またはデータ サイエンティストであれば、BigQuery ML ドキュメントは、データツールを検出、実装、管理して、重要なビジネス上の意思決定を伝達するうえで役立ちます。

BigQuery を使ってみる

BigQuery は数分で使い始めることができます。BigQuery の無料枠または無料サンドボックスを活用して、データの読み込みとクエリを開始できます。

  1. BigQuery のサンドボックス: BigQuery サンドボックスをリスクフリーかつ無料でご利用いただけます。
  2. Cloud Console クイックスタート: BigQuery Console の機能に慣れるようにします。
  3. 一般公開データセット: 一般公開データセット プログラムの大規模な実際のデータを検索することで、BigQuery のパフォーマンスを体験します。

BigQuery を詳しく見る

BigQuery のサーバーレス インフラストラクチャを使用すると、リソース管理ではなくデータに集中できます。BigQuery は、クラウドベースのデータ ウェアハウスと強力な分析ツールを組み合わせたものです。

BigQuery ストレージ

BigQuery は、分析クエリに最適化されたカラム型ストレージ形式でデータを保存します。BigQuery はデータをテーブル、行、列に表示し、データベース トランザクション セマンティクス(ACID)を完全にサポートします。高可用性を実現するため、BigQuery ストレージは複数のロケーションに自動的に複製されます。

詳細については、BigQuery ストレージの概要データ ウェアハウス使用者のための BigQuery をご覧ください。

BigQuery による分析

記述的分析および処方的分析を行う際、ビジネス インテリジェンス、アドホック分析、地理空間分析、機械学習が使用されます。BigQuery に保存されたデータに対してクエリを実行することも、Cloud Storage、Bigtable、Spanner、Google ドライブに保存された Google スプレッドシートなどの外部テーブルや連携クエリを使用して、外部テーブルのデータに対するクエリを実行することもできます。

詳細については、BigQuery の分析の概要をご覧ください。

BigQuery の管理

BigQuery では、データとコンピューティング リソースの一元管理が可能ですが、Identity and Access Management(IAM)では、Google Cloud 全体で使用されるアクセスモデルにより、これらのリソースを保護できます。Google Cloud セキュリティのベスト プラクティスでは、従来の境界セキュリティや、より複雑できめ細かい多層防御アプローチを含めることができる、堅牢かつ柔軟なアプローチが用意されています。

  • データ セキュリティとガバナンスの概要では、データ ガバナンスと、BigQuery リソースの保護に必要な制御について確認できます。
  • ジョブとは、データの読み込み、エクスポート、クエリ、コピーなど、ユーザーに代わって BigQuery が実行するアクションのことです。
  • Reservations では、オンデマンド料金と定額料金を切り替えることができます。

詳細については、BigQuery の管理の概要をご覧ください。

BigQuery リソース

次の BigQuery リソースを利用できます。

API、ツール、リファレンス

BigQuery のデベロッパーとアナリスト向けの参考資料:

BigQuery の役割とリソース

BigQuery は、次の役割と責任にわたってデータ プロフェッショナルのニーズに対応しています。

データ アナリスト

次の操作が必要な場合に役立つタスク ガイダンス。

データ管理者

次の操作が必要な場合に役立つタスク ガイダンス。

詳細については、BigQuery の管理の概要をご覧ください。

データ サイエンティスト

BigQuery ML の機械学習で次の操作が必要な場合に役立つタスク ガイダンス。

データ デベロッパー

次の操作が必要な場合に役立つタスク ガイダンス。

BigQuery の動画チュートリアル

次の動画チュートリアルでは、BigQuery の紹介と簡単な使い方の説明を行っています。

タイトル

説明

BigQuery とは(4:39) BigQuery でアナリストやデベロッパーが大量のデータを取り込んで保存するための仕組み。
BigQuery サンドボックスの使用(3:05) BigQuery サンドボックスを設定して、クレジット カードの登録なしでクエリを実行できるようにする方法
質問とクエリの実行(5:11) BigQuery UI で SQL クエリを作成して実行する方法(例: 魅力的な背番号を選択する)
BigQuery へのデータの読み込み(5:31) リアルタイムでデータを取り込んで分析する方法、または一括でのデータのバッチ分析(例: 猫と犬)
クエリ結果の可視化(5:38) 複雑なデータセットの把握と習得を容易にするためにデータの可視化を役立てる方法
IAM によるアクセス管理(5:23) IAM 権限とアクセス制御を使用して、他のユーザーが BigQuery 内のデータセットをクエリできるようにする方法
クエリの保存と共有(6:17) BigQuery にクエリを保存して共有する簡単な方法
認可済みビューでの機密データの保護(7:12) カスタマイズしたアクセス制御を設定して、異なるユーザーとデータセットを簡単に共有する方法
BigQuery を使用した外部データのクエリ(5:49) BigQuery で外部データソースを設定し、Cloud Storage、Cloud SQL、Google ドライブなどのデータにクエリを実行する方法
ユーザー定義関数とは(4:59) BigQuery でのデータセットの分析に使用するユーザー定義関数(UDF)の作成方法

次のステップ