Create and use tables

This document describes how to create and use standard (built-in) tables in BigQuery. For information about creating other table types, see:

After creating a table, you can:

  • Control access to your table data
  • Get information about your tables
  • List the tables in a dataset
  • Get table metadata

For more information about managing tables including updating table properties, copying a table, and deleting a table, see Managing tables.

Before you begin

Before creating a table in BigQuery, first:

Table naming

When you create a table in BigQuery, the table name must be unique per dataset. The table name can:

  • Contain up to 1,024 characters.
  • Contain Unicode characters in category L (letter), M (mark), N (number), Pc (connector, including underscore), Pd (dash), Zs (space). For more information, see General Category.

The following are all examples of valid table names: table 01, ग्राहक, 00_お客様, étudiant-01.

Caveats:

  • Table names are case-sensitive by default. mytable and MyTable can coexist in the same dataset, unless they are part of a dataset with case-sensitivity turned off.
  • Some table names and table name prefixes are reserved. If you receive an error saying that your table name or prefix is reserved, then select a different name and try again.
  • If you include multiple dot operators (.) in a sequence, the duplicate operators are implicitly stripped.

    For example, this: project_name....datasest_name..table_name

    Becomes this: project_name.dataset_name.table_name

Create tables

You can create a table in BigQuery in the following ways:

  • Manually using the Google Cloud console or the bq command-line tool bq mk command.
  • Programmatically by calling the tables.insert API method.
  • By using the client libraries.
  • From query results.
  • By defining a table that references an external data source.
  • When you load data.
  • By using a CREATE TABLE data definition language (DDL) statement.

Required permissions

To create a table, you need the following IAM permissions:

  • bigquery.tables.create
  • bigquery.tables.updateData
  • bigquery.jobs.create

Additionally, you might require the bigquery.tables.getData permission to access the data that you write to the table.

Each of the following predefined IAM roles includes the permissions that you need in order to create a table:

  • roles/bigquery.dataEditor
  • roles/bigquery.dataOwner
  • roles/bigquery.admin (includes the bigquery.jobs.create permission)
  • roles/bigquery.user (includes the bigquery.jobs.create permission)
  • roles/bigquery.jobUser (includes the bigquery.jobs.create permission)

Additionally, if you have the bigquery.datasets.create permission, you can create and update tables in the datasets that you create.

For more information on IAM roles and permissions in BigQuery, see Predefined roles and permissions.

Create an empty table with a schema definition

You can create an empty table with a schema definition in the following ways:

  • Enter the schema using the Google Cloud console.
  • Provide the schema inline using the bq command-line tool.
  • Submit a JSON schema file using the bq command-line tool.
  • Provide the schema in a table resource when calling the API's tables.insert method.

For more information about specifying a table schema, see Specifying a schema.

After the table is created, you can load data into it or populate it by writing query results to it.

To create an empty table with a schema definition:

Console

  1. In the Google Cloud console, go to the BigQuery page.

    Go to BigQuery

  2. In the Explorer pane, expand your project, and then select a dataset.
  3. In the Dataset info section, click Create table.
  4. In the Create table panel, specify the following details:
    1. In the Source section, select Empty table in the Create table from list.
    2. In the Destination section, specify the following details:
      1. For Dataset, select the dataset in which you want to create the table.
      2. In the Table field, enter the name of the table that you want to create.
      3. Verify that the Table type field is set to Native table.
    3. In the Schema section, enter the schema definition. You can enter schema information manually by using one of the following methods:
      • Option 1: Click Edit as text and paste the schema in the form of a JSON array. When you use a JSON array, you generate the schema using the same process as creating a JSON schema file. You can view the schema of an existing table in JSON format by entering the following command:
            bq show --format=prettyjson dataset.table
            
      • Option 2: Click Add field and enter the table schema. Specify each field's Name, Type, and Mode.
    4. Optional: Specify Partition and cluster settings. For more information, see Creating partitioned tables and Creating and using clustered tables.
    5. Optional: In the Advanced options section, if you want to use a customer-managed encryption key, then select the Use a customer-managed encryption key (CMEK) option. By default, BigQuery encrypts customer content stored at rest by using a Google-managed key.
    6. Click Create table.

SQL

The following example creates a table named newtable that expires on January 1, 2023:

  1. In the Google Cloud console, go to the BigQuery page.

    Go to BigQuery

  2. In the query editor, enter the following statement:

    CREATE TABLE mydataset.newtable (
      x INT64 OPTIONS (description = 'An optional INTEGER field'),
      y STRUCT <
        a ARRAY <STRING> OPTIONS (description = 'A repeated STRING field'),
        b BOOL
      >
    ) OPTIONS (
        expiration_timestamp = TIMESTAMP '2023-01-01 00:00:00 UTC',
        description = 'a table that expires in 2023',
        labels = [('org_unit', 'development')]);
    

  3. Click Run.

For more information about how to run queries, see Running interactive queries.

bq

  1. In the Google Cloud console, activate Cloud Shell.

    Activate Cloud Shell

    At the bottom of the Google Cloud console, a Cloud Shell session starts and displays a command-line prompt. Cloud Shell is a shell environment with the Google Cloud CLI already installed and with values already set for your current project. It can take a few seconds for the session to initialize.

  2. Use the bq mk command with the --table or -t flag. You can supply table schema information inline or via a JSON schema file. Optional parameters include:

    • --expiration
    • --description
    • --time_partitioning_field
    • --time_partitioning_type
    • --range_partitioning
    • --clustering_fields
    • --destination_kms_key
    • --label

    --time_partitioning_field, --time_partitioning_type, --range_partitioning, --clustering_fields, and --destination_kms_key are not demonstrated here. Refer to the following links for more information on these optional parameters:

    If you are creating a table in a project other than your default project, add the project ID to the dataset in the following format: project_id:dataset.

    To create an empty table in an existing dataset with a schema definition, enter the following:

    bq mk \
    --table \
    --expiration integer \
    --description description \
    --label key_1:value_1 \
    --label key_2:value_2 \
    project_id:dataset.table \
    schema
    

    Replace the following:

    • integer is the default lifetime (in seconds) for the table. The minimum value is 3600 seconds (one hour). The expiration time evaluates to the current UTC time plus the integer value. If you set the expiration time when you create a table, the dataset's default table expiration setting is ignored.
    • description is a description of the table in quotes.
    • key_1:value_1 and key_2:value_2 are key-value pairs that specify labels.
    • project_id is your project ID.
    • dataset is a dataset in your project.
    • table is the name of the table you're creating.
    • schema is an inline schema definition in the format field:data_type,field:data_type or the path to the JSON schema file on your local machine.

    When you specify the schema on the command line, you cannot include a RECORD (STRUCT) type, you cannot include a column description, and you cannot specify the column's mode. All modes default to NULLABLE. To include descriptions, modes, and RECORD types, supply a JSON schema file instead.

    Examples:

    Enter the following command to create a table using an inline schema definition. This command creates a table named mytable in mydataset in your default project. The table expiration is set to 3600 seconds (1 hour), the description is set to This is my table, and the label is set to organization:development. The command uses the -t shortcut instead of --table. The schema is specified inline as: qtr:STRING,sales:FLOAT,year:STRING.

    bq mk \
     -t \
     --expiration 3600 \
     --description "This is my table" \
     --label organization:development \
     mydataset.mytable \
     qtr:STRING,sales:FLOAT,year:STRING
    

    Enter the following command to create a table using a JSON schema file. This command creates a table named mytable in mydataset in your default project. The table expiration is set to 3600 seconds (1 hour), the description is set to This is my table, and the label is set to organization:development. The path to the schema file is /tmp/myschema.json.

    bq mk \
     --table \
     --expiration 3600 \
     --description "This is my table" \
     --label organization:development \
     mydataset.mytable \
     /tmp/myschema.json
    

    Enter the following command to create a table using an JSON schema file. This command creates a table named mytable in mydataset in myotherproject. The table expiration is set to 3600 seconds (1 hour), the description is set to This is my table, and the label is set to organization:development. The path to the schema file is /tmp/myschema.json.

    bq mk \
     --table \
     --expiration 3600 \
     --description "This is my table" \
     --label organization:development \
     myotherproject:mydataset.mytable \
     /tmp/myschema.json
    

    After the table is created, you can update the table's expiration, description, and labels. You can also modify the schema definition.

API

Call the tables.insert method with a defined table resource.

C#

Before trying this sample, follow the C# setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery C# API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.


using Google.Cloud.BigQuery.V2;
using System;

public class BigQueryCreateTable
{
    public BigQueryTable CreateTable(
        string projectId = "your-project-id",
        string datasetId = "your_dataset_id"
    )
    {
        BigQueryClient client = BigQueryClient.Create(projectId);
        var dataset = client.GetDataset(datasetId);
        // Create schema for new table.
        var schema = new TableSchemaBuilder
        {
            { "full_name", BigQueryDbType.String },
            { "age", BigQueryDbType.Int64 }
        }.Build();
        // Create the table
        return dataset.CreateTable(tableId: "your_table_id", schema: schema);
    }
}

Go

Before trying this sample, follow the Go setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Go API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import (
	"context"
	"fmt"
	"time"

	"cloud.google.com/go/bigquery"
)

// createTableExplicitSchema demonstrates creating a new BigQuery table and specifying a schema.
func createTableExplicitSchema(projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydatasetid"
	// tableID := "mytableid"
	ctx := context.Background()

	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %v", err)
	}
	defer client.Close()

	sampleSchema := bigquery.Schema{
		{Name: "full_name", Type: bigquery.StringFieldType},
		{Name: "age", Type: bigquery.IntegerFieldType},
	}

	metaData := &bigquery.TableMetadata{
		Schema:         sampleSchema,
		ExpirationTime: time.Now().AddDate(1, 0, 0), // Table will be automatically deleted in 1 year.
	}
	tableRef := client.Dataset(datasetID).Table(tableID)
	if err := tableRef.Create(ctx, metaData); err != nil {
		return err
	}
	return nil
}

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Field;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardSQLTypeName;
import com.google.cloud.bigquery.StandardTableDefinition;
import com.google.cloud.bigquery.TableDefinition;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableInfo;

public class CreateTable {

  public static void runCreateTable() {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    Schema schema =
        Schema.of(
            Field.of("stringField", StandardSQLTypeName.STRING),
            Field.of("booleanField", StandardSQLTypeName.BOOL));
    createTable(datasetName, tableName, schema);
  }

  public static void createTable(String datasetName, String tableName, Schema schema) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);
      TableDefinition tableDefinition = StandardTableDefinition.of(schema);
      TableInfo tableInfo = TableInfo.newBuilder(tableId, tableDefinition).build();

      bigquery.create(tableInfo);
      System.out.println("Table created successfully");
    } catch (BigQueryException e) {
      System.out.println("Table was not created. \n" + e.toString());
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Node.js API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

// Import the Google Cloud client library and create a client
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function createTable() {
  // Creates a new table named "my_table" in "my_dataset".

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = "my_dataset";
  // const tableId = "my_table";
  // const schema = 'Name:string, Age:integer, Weight:float, IsMagic:boolean';

  // For all options, see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource
  const options = {
    schema: schema,
    location: 'US',
  };

  // Create a new table in the dataset
  const [table] = await bigquery
    .dataset(datasetId)
    .createTable(tableId, options);

  console.log(`Table ${table.id} created.`);
}

PHP

Before trying this sample, follow the PHP setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery PHP API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

use Google\Cloud\BigQuery\BigQueryClient;

/** Uncomment and populate these variables in your code */
// $projectId = 'The Google project ID';
// $datasetId = 'The BigQuery dataset ID';
// $tableId = 'The BigQuery table ID';
// $fields = [
//    [
//        'name' => 'field1',
//        'type' => 'string',
//        'mode' => 'required'
//    ],
//    [
//        'name' => 'field2',
//        'type' => 'integer'
//    ],
//];

$bigQuery = new BigQueryClient([
    'projectId' => $projectId,
]);
$dataset = $bigQuery->dataset($datasetId);
$schema = ['fields' => $fields];
$table = $dataset->createTable($tableId, ['schema' => $schema]);
printf('Created table %s' . PHP_EOL, $tableId);

Python

Before trying this sample, follow the Python setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Python API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name"

schema = [
    bigquery.SchemaField("full_name", "STRING", mode="REQUIRED"),
    bigquery.SchemaField("age", "INTEGER", mode="REQUIRED"),
]

table = bigquery.Table(table_id, schema=schema)
table = client.create_table(table)  # Make an API request.
print(
    "Created table {}.{}.{}".format(table.project, table.dataset_id, table.table_id)
)

Ruby

Before trying this sample, follow the Ruby setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Ruby API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

require "google/cloud/bigquery"

def create_table dataset_id = "my_dataset"
  bigquery = Google::Cloud::Bigquery.new
  dataset  = bigquery.dataset dataset_id
  table_id = "my_table"

  table = dataset.create_table table_id do |updater|
    updater.string  "full_name", mode: :required
    updater.integer "age",       mode: :required
  end

  puts "Created table: #{table_id}"
end

Create an empty table without a schema definition

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardTableDefinition;
import com.google.cloud.bigquery.TableDefinition;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableInfo;

// Sample to create a table without schema
public class CreateTableWithoutSchema {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    createTableWithoutSchema(datasetName, tableName);
  }

  public static void createTableWithoutSchema(String datasetName, String tableName) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);
      TableDefinition tableDefinition = StandardTableDefinition.of(Schema.of());
      TableInfo tableInfo = TableInfo.newBuilder(tableId, tableDefinition).build();

      bigquery.create(tableInfo);
      System.out.println("Table created successfully");
    } catch (BigQueryException e) {
      System.out.println("Table was not created. \n" + e.toString());
    }
  }
}

Create a table from a query result

To create a table from a query result, write the results to a destination table.

Console

  1. Open the BigQuery page in the Google Cloud console.

    Go to the BigQuery page

  2. In the Explorer panel, expand your project and select a dataset.

  3. Enter a valid SQL query.

  4. Click More and then select Query settings.

    Query settings

  5. Select the Set a destination table for query results option.

    Set destination

  6. In the Destination section, select the Dataset in which you want to create the table, and then choose a Table Id.

  7. In the Destination table write preference section, choose one of the following:

    • Write if empty — Writes the query results to the table only if the table is empty.
    • Append to table — Appends the query results to an existing table.
    • Overwrite table — Overwrites an existing table with the same name using the query results.
  8. Optional: For Data location, choose your location.

  9. To update the query settings, click Save.

  10. Click Run. This creates a query job that writes the query results to the table you specified.

Alternatively, if you forget to specify a destination table before running your query, you can copy the cached results table to a permanent table by clicking the Save Results button above the editor.

SQL

The following example uses the CREATE TABLE statement to create the trips table from data in the public bikeshare_trips table:

  1. In the Google Cloud console, go to the BigQuery page.

    Go to BigQuery

  2. In the query editor, enter the following statement:

    CREATE TABLE mydataset.trips AS (
      SELECT
        bikeid,
        start_time,
        duration_minutes
      FROM
        bigquery-public-data.austin_bikeshare.bikeshare_trips
    );
    

  3. Click Run.

For more information about how to run queries, see Running interactive queries.

For more information, see Creating a new table from an existing table.

bq

  1. In the Google Cloud console, activate Cloud Shell.

    Activate Cloud Shell

    At the bottom of the Google Cloud console, a Cloud Shell session starts and displays a command-line prompt. Cloud Shell is a shell environment with the Google Cloud CLI already installed and with values already set for your current project. It can take a few seconds for the session to initialize.

  2. Enter the bq query command and specify the --destination_table flag to create a permanent table based on the query results. Specify the use_legacy_sql=false flag to use GoogleSQL syntax. To write the query results to a table that is not in your default project, add the project ID to the dataset name in the following format: project_id:dataset.

    Optional: Supply the --location flag and set the value to your location.

    To control the write disposition for an existing destination table, specify one of the following optional flags:

    • --append_table: If the destination table exists, the query results are appended to it.
    • --replace: If the destination table exists, it is overwritten with the query results.

      bq --location=location query \
      --destination_table project_id:dataset.table \
      --use_legacy_sql=false 'query'
      

      Replace the following:

    • location is the name of the location used to process the query. The --location flag is optional. For example, if you are using BigQuery in the Tokyo region, you can set the flag's value to asia-northeast1. You can set a default value for the location by using the .bigqueryrc file.

    • project_id is your project ID.

    • dataset is the name of the dataset that contains the table to which you are writing the query results.

    • table is the name of the table to which you're writing the query results.

    • query is a query in GoogleSQL syntax.

      If no write disposition flag is specified, the default behavior is to write the results to the table only if it is empty. If the table exists and it is not empty, the following error is returned: `BigQuery error in query operation: Error processing job project_id:bqjob_123abc456789_00000e1234f_1': Already Exists: Table project_id:dataset.table.

      Examples:

      Enter the following command to write query results to a destination table named mytable in mydataset. The dataset is in your default project. Since no write disposition flag is specified in the command, the table must be new or empty. Otherwise, an Already exists error is returned. The query retrieves data from the USA Name Data public dataset.

      bq query \
      --destination_table mydataset.mytable \
      --use_legacy_sql=false \
      'SELECT
      name,
      number
      FROM
      `bigquery-public-data`.usa_names.usa_1910_current
      WHERE
      gender = "M"
      ORDER BY
      number DESC'
      

      Enter the following command to use query results to overwrite a destination table named mytable in mydataset. The dataset is in your default project. The command uses the --replace flag to overwrite the destination table.

      bq query \
      --destination_table mydataset.mytable \
      --replace \
      --use_legacy_sql=false \
      'SELECT
      name,
      number
      FROM
      `bigquery-public-data`.usa_names.usa_1910_current
      WHERE
      gender = "M"
      ORDER BY
      number DESC'
      

      Enter the following command to append query results to a destination table named mytable in mydataset. The dataset is in my-other-project, not your default project. The command uses the --append_table flag to append the query results to the destination table.

      bq query \
      --append_table \
      --use_legacy_sql=false \
      --destination_table my-other-project:mydataset.mytable \
      'SELECT
      name,
      number
      FROM
      `bigquery-public-data`.usa_names.usa_1910_current
      WHERE
      gender = "M"
      ORDER BY
      number DESC'
      

      The output for each of these examples looks like the following. For readability, some output is truncated.

      Waiting on bqjob_r123abc456_000001234567_1 ... (2s) Current status: DONE
      +---------+--------+
      |  name   | number |
      +---------+--------+
      | Robert  |  10021 |
      | John    |   9636 |
      | Robert  |   9297 |
      | ...              |
      +---------+--------+
      

API

To save query results to a permanent table, call the jobs.insert method, configure a query job, and include a value for the destinationTable property. To control the write disposition for an existing destination table, configure the writeDisposition property.

To control the processing location for the query job, specify the location property in the jobReference section of the job resource.

Go

Before trying this sample, follow the Go setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Go API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/bigquery"
	"google.golang.org/api/iterator"
)

// queryWithDestination demonstrates saving the results of a query to a specific table by setting the destination
// via the API properties.
func queryWithDestination(w io.Writer, projectID, destDatasetID, destTableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %v", err)
	}
	defer client.Close()

	q := client.Query("SELECT 17 as my_col")
	q.Location = "US" // Location must match the dataset(s) referenced in query.
	q.QueryConfig.Dst = client.Dataset(destDatasetID).Table(destTableID)
	// Run the query and print results when the query job is completed.
	job, err := q.Run(ctx)
	if err != nil {
		return err
	}
	status, err := job.Wait(ctx)
	if err != nil {
		return err
	}
	if err := status.Err(); err != nil {
		return err
	}
	it, err := job.Read(ctx)
	for {
		var row []bigquery.Value
		err := it.Next(&row)
		if err == iterator.Done {
			break
		}
		if err != nil {
			return err
		}
		fmt.Fprintln(w, row)
	}
	return nil
}

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

To save query results to a permanent table, set the destination table to the desired TableId in a QueryJobConfiguration.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.QueryJobConfiguration;
import com.google.cloud.bigquery.TableId;

public class SaveQueryToTable {

  public static void runSaveQueryToTable() {
    // TODO(developer): Replace these variables before running the sample.
    String query = "SELECT corpus FROM `bigquery-public-data.samples.shakespeare` GROUP BY corpus;";
    String destinationTable = "MY_TABLE";
    String destinationDataset = "MY_DATASET";

    saveQueryToTable(destinationDataset, destinationTable, query);
  }

  public static void saveQueryToTable(
      String destinationDataset, String destinationTableId, String query) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      // Identify the destination table
      TableId destinationTable = TableId.of(destinationDataset, destinationTableId);

      // Build the query job
      QueryJobConfiguration queryConfig =
          QueryJobConfiguration.newBuilder(query).setDestinationTable(destinationTable).build();

      // Execute the query.
      bigquery.query(queryConfig);

      // The results are now saved in the destination table.

      System.out.println("Saved query ran successfully");
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Saved query did not run \n" + e.toString());
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Node.js API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

// Import the Google Cloud client library
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function queryDestinationTable() {
  // Queries the U.S. given names dataset for the state of Texas
  // and saves results to permanent table.

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = 'my_dataset';
  // const tableId = 'my_table';

  // Create destination table reference
  const dataset = bigquery.dataset(datasetId);
  const destinationTable = dataset.table(tableId);

  const query = `SELECT name
    FROM \`bigquery-public-data.usa_names.usa_1910_2013\`
    WHERE state = 'TX'
    LIMIT 100`;

  // For all options, see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource
  const options = {
    query: query,
    // Location must match that of the dataset(s) referenced in the query.
    location: 'US',
    destination: destinationTable,
  };

  // Run the query as a job
  const [job] = await bigquery.createQueryJob(options);

  console.log(`Job ${job.id} started.`);
  console.log(`Query results loaded to table ${destinationTable.id}`);
}

Python

Before trying this sample, follow the Python setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Python API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

To save query results to a permanent table, create a QueryJobConfig and set the destination to the desired TableReference. Pass the job configuration to the query method.
from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the destination table.
# table_id = "your-project.your_dataset.your_table_name"

job_config = bigquery.QueryJobConfig(destination=table_id)

sql = """
    SELECT corpus
    FROM `bigquery-public-data.samples.shakespeare`
    GROUP BY corpus;
"""

# Start the query, passing in the extra configuration.
query_job = client.query(sql, job_config=job_config)  # Make an API request.
query_job.result()  # Wait for the job to complete.

print("Query results loaded to the table {}".format(table_id))

Create a table that references an external data source

An external data source is a data source that you can query directly from BigQuery, even though the data is not stored in BigQuery storage. For example, you might have data in a different Google Cloud database, in files in Cloud Storage, or in a different cloud product altogether that you would like to analyze in BigQuery, but that you aren't prepared to migrate.

For more information, see Introduction to external data sources.

Create a table when you load data

When you load data into BigQuery, you can load data into a new table or partition, you can append data to an existing table or partition, or you can overwrite a table or partition. You do not need to create an empty table before loading data into it. You can create the new table and load your data at the same time.

When you load data into BigQuery, you can supply the table or partition schema, or for supported data formats, you can use schema auto-detection.

For more information about loading data, see Introduction to loading data into BigQuery.

Control access to tables

To configure access to tables and views, you can grant an IAM role to an entity at the following levels, listed in order of range of resources allowed (largest to smallest):

You can also restrict data access within tables, by using the following methods:

Access with any resource protected by IAM is additive. For example, if an entity does not have access at the high level such as a project, you could grant the entity access at the dataset level, and then the entity will have access to the tables and views in the dataset. Similarly, if the entity does not have access at the high level or the dataset level, you could grant the entity access at the table or view level.

Granting IAM roles at a higher level in the Google Cloud resource hierarchy such as the project, folder, or organization level gives the entity access to a broad set of resources. For example, granting a role to an entity at the project level gives that entity permissions that apply to all datasets throughout the project.

Granting a role at the dataset level specifies the operations an entity is allowed to perform on tables and views in that specific dataset, even if the entity does not have access at a higher level. For information on configuring dataset-level access controls, see Controlling access to datasets.

Granting a role at the table or view level specifies the operations an entity is allowed to perform on specific tables and views, even if the entity does not have access at a higher level. For information on configuring table-level access controls, see Controlling access to tables and views.

You can also create IAM custom roles. If you create a custom role, the permissions you grant depend on the specific operations you want the entity to be able to perform.

You can't set a "deny" permission on any resource protected by IAM.

For more information about roles and permissions, see Understanding roles in the IAM documentation and the BigQuery IAM roles and permissions.

Get information about tables

You can get information or metadata about tables in the following ways:

  • Using the Google Cloud console.
  • Using the bq command-line tool bq show command.
  • Calling the tables.get API method.
  • Using the client libraries.
  • Querying the INFORMATION_SCHEMA views (beta).

Required permissions

At a minimum, to get information about tables, you must be granted bigquery.tables.get permissions. The following predefined IAM roles include bigquery.tables.get permissions:

  • bigquery.metadataViewer
  • bigquery.dataViewer
  • bigquery.dataOwner
  • bigquery.dataEditor
  • bigquery.admin

In addition, if a user has bigquery.datasets.create permissions, when that user creates a dataset, they are granted bigquery.dataOwner access to it. bigquery.dataOwner access gives the user the ability to retrieve table metadata.

For more information on IAM roles and permissions in BigQuery, see Access control.

Get table information

To get information about tables:

Console

  1. In the navigation panel, in the Resources section, expand your project, and then select a dataset.

  2. Click the dataset name to expand it. The tables and views in the dataset appear.

  3. Click the table name.

  4. In the Details panel, click Details to display the table's description and table information.

  5. Optionally, switch to the Schema tab to view the table's schema definition.

bq

  1. In the Google Cloud console, activate Cloud Shell.

    Activate Cloud Shell

    At the bottom of the Google Cloud console, a Cloud Shell session starts and displays a command-line prompt. Cloud Shell is a shell environment with the Google Cloud CLI already installed and with values already set for your current project. It can take a few seconds for the session to initialize.

  2. Issue the bq show command to display all table information. Use the --schema flag to display only table schema information. The --format flag can be used to control the output.

    If you are getting information about a table in a project other than your default project, add the project ID to the dataset in the following format: project_id:dataset.

    bq show \
    --schema \
    --format=prettyjson \
    project_id:dataset.table
    

    Where:

    • project_id is your project ID.
    • dataset is the name of the dataset.
    • table is the name of the table.

    Examples:

    Enter the following command to display all information about mytable in mydataset. mydataset is in your default project.

    bq show --format=prettyjson mydataset.mytable
    

    Enter the following command to display all information about mytable in mydataset. mydataset is in myotherproject, not your default project.

    bq show --format=prettyjson myotherproject:mydataset.mytable
    

    Enter the following command to display only schema information about mytable in mydataset. mydataset is in myotherproject, not your default project.

    bq show --schema --format=prettyjson myotherproject:mydataset.mytable
    

API

Call the tables.get method and provide any relevant parameters.

Go

Before trying this sample, follow the Go setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Go API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/bigquery"
)

// printTableInfo demonstrates fetching metadata from a table and printing some basic information
// to an io.Writer.
func printTableInfo(w io.Writer, projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %v", err)
	}
	defer client.Close()

	meta, err := client.Dataset(datasetID).Table(tableID).Metadata(ctx)
	if err != nil {
		return err
	}
	// Print basic information about the table.
	fmt.Fprintf(w, "Schema has %d top-level fields\n", len(meta.Schema))
	fmt.Fprintf(w, "Description: %s\n", meta.Description)
	fmt.Fprintf(w, "Rows in managed storage: %d\n", meta.NumRows)
	return nil
}

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Table;
import com.google.cloud.bigquery.TableId;

public class GetTable {

  public static void runGetTable() {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "bigquery_public_data";
    String datasetName = "samples";
    String tableName = "shakespeare";
    getTable(projectId, datasetName, tableName);
  }

  public static void getTable(String projectId, String datasetName, String tableName) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(projectId, datasetName, tableName);
      Table table = bigquery.getTable(tableId);
      System.out.println("Table info: " + table.getDescription());
    } catch (BigQueryException e) {
      System.out.println("Table not retrieved. \n" + e.toString());
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Node.js API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

// Import the Google Cloud client library
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function getTable() {
  // Retrieves table named "my_table" in "my_dataset".

  /**
   * TODO(developer): Uncomment the following lines before running the sample
   */
  // const datasetId = "my_dataset";
  // const tableId = "my_table";

  // Retrieve table reference
  const dataset = bigquery.dataset(datasetId);
  const [table] = await dataset.table(tableId).get();

  console.log('Table:');
  console.log(table.metadata.tableReference);
}
getTable();

PHP

Before trying this sample, follow the PHP setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery PHP API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

use Google\Cloud\BigQuery\BigQueryClient;

/** Uncomment and populate these variables in your code */
//$projectId = 'The Google project ID';
//$datasetId = 'The BigQuery dataset ID';
//$tableId   = 'The BigQuery table ID';

$bigQuery = new BigQueryClient([
    'projectId' => $projectId,
]);
$dataset = $bigQuery->dataset($datasetId);
$table = $dataset->table($tableId);

Python

Before trying this sample, follow the Python setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Python API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.