Apigee 与具有公共 IP 地址的目标后端之间的南向流量使用 Cloud NAT 将 Apigee 实例的专用 IP 地址转换为公共 IP 地址。如果目标后端需要使用 IP 许可名单,则可以为出站流量预留和激活静态 NAT IP 地址。
本主题介绍了如何计算支持预期流量所需的静态 NAT IP 的数量下限。
须知事项
如果您选择使用静态 NAT IP 分配来支持列入许可名单,则需要计算支持预期流量所需的静态 IP 的数量下限。对于此计算,您需要以下信息:
每个事务的最长时间:这是事务从请求开始到响应结束所需的最长时间(以秒为单位)。
每秒事务数上限 (TPS):这是 Apigee 实例可能支持的每秒事务数上限。
单个唯一后端的 TPS 上限:这是任何单个后端可能支持的每秒事务数上限。
环境数量上限:Apigee 实例上的环境数量上限。
计算所需的静态 IP 数量
您可以使用以下公式计算需要静态分配的 NAT IP 的数量下限:
计算每个后端所需的 NAT 来源端口数上限,即 $ S $。
$$ S = \lceil (150 + T) \times B \rceil $$
其中:
$ T $ 是每个事务的最长时间(以秒为单位)。
$ B $ 是任何单个唯一后端的 TPS 上限。
$ \lceil \rceil $ 是 ceiling(最小整数)函数,表示向上取整到下一个整数
计算 Apigee 实例使用的端口数下限,即 $ N $。
$$ N = max(4096 \times E, \lceil {512 \over 75} \times R \rceil) + 6144 $$
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["很难理解","hardToUnderstand","thumb-down"],["信息或示例代码不正确","incorrectInformationOrSampleCode","thumb-down"],["没有我需要的信息/示例","missingTheInformationSamplesINeed","thumb-down"],["翻译问题","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],["最后更新时间 (UTC):2025-09-04。"],[[["\u003cp\u003eThis document explains how to calculate the minimum number of static NAT IPs needed for Apigee to support outbound traffic to target backends that require IP allow-listing.\u003c/p\u003e\n"],["\u003cp\u003eThe calculation requires knowing the maximum time per transaction, maximum transactions per second (TPS) for both the Apigee instance and a single backend, and the number of Apigee environments.\u003c/p\u003e\n"],["\u003cp\u003eThe provided formulas determine the maximum number of NAT source ports required, which is then used to find the minimum number of NAT IPs needed, using a "worst-case" scenario that does not consider connection reuse.\u003c/p\u003e\n"],["\u003cp\u003eExamples are included to demonstrate how to apply these formulas in scenarios with different transaction rates, durations, and backend configurations to calculate required static NAT IPs.\u003c/p\u003e\n"],["\u003cp\u003eThe document is applicable to Apigee and not to Apigee hybrid.\u003c/p\u003e\n"]]],[],null,["# Calculating static NAT IP requirements\n\n*This page\napplies to **Apigee** , but not to **Apigee hybrid**.*\n\n\n*View [Apigee Edge](https://docs.apigee.com/api-platform/get-started/what-apigee-edge) documentation.*\n\nSouthbound traffic between Apigee and a target backend with a public IP address uses [Cloud NAT](https://cloud.google.com/nat/docs/overview)\nto translate the private IP address of your Apigee instance into a public IP address. If your target backend requires IP allow-listing, you can reserve and activate static NAT IPs for egress traffic.\nThis topic describes how to calculate the minimum number of static NAT IPs required to support anticipated traffic.\n\nBefore you begin\n----------------\n\nIf you choose to use static NAT IP allocation to support allow-listing, you will need to calculate\nthe minimum number of static IPs required to support anticipated traffic. For this calculation, you will need the following information:\n\n- **Maximum time per transaction**: This is the maximum time, in seconds, that a transaction will take, from the start of the request until the end of the response.\n- **Maximum transactions per second (TPS)**: This is the maximum number of transactions per second the Apigee instance can possibly support.\n- **Maximum TPS for a single unique backend**: This is the maximum number of transactions per second that any single backend can possibly support.\n- **Maximum number of environments**: The maximum number of environments on this Apigee instance.\n\n| **Note**: The maximums detailed above are a part of capacity planning for NAT, and must include consideration of possible traffic spikes, TPS increases for backends due to a maintenance or outage, and future environment additions. It is recommended to add some buffer to the projected numbers in order to handle unforeseen traffic increases, and to redo the NAT calculations when projections change.\n\nCalculate the number of static IPs required\n-------------------------------------------\n\nYou can use the following formulas to calculate the minimum number of NAT IPs that need to be statically assigned:\n\n1. Calculate the maximum number of NAT source ports required per backend as $ S $. \n $$ S = \\\\lceil (150 + T) \\\\times B \\\\rceil $$\n\n Where:\n - $ T $ is the maximum time per transaction, in seconds.\n - $ B $ is the maximum TPS for any single unique backend.\n - $ \\\\lceil \\\\rceil $ is the ceiling (least integer) function, meaning round up to the next integer\n2. Calculate the minimum ports used by the Apigee instance as $ N $. \n $$ N = max(4096 \\\\times E, \\\\lceil {512 \\\\over 75} \\\\times R \\\\rceil) + 6144 $$\n\n Where:\n - $ E $ is the number of Apigee environments.\n - $ R $ is the maximum TPS for the Apigee instance.\n - $ \\\\lceil \\\\rceil $ is the ceiling (least integer) function, meaning round up to the next integer\n - The $ \\\\mathit{max}() $ function takes the maximum of the two values.\n3. Take the maximum number of ports required as $ P $. \n $$ P = max(S, N) $$\n\n Where:\n - $ S $ is the maximum number of NAT source ports required, as calculated in Step 1.\n - $ N $ is the minimum number of ports used by the Apigee instance, as calculated in Step 2.\n - The $ \\\\mathit{max}() $ function takes the maximum of the two values.\n4. Calculate the minimum number of NAT IPs required as $ I $. \n $$ I = \\\\lceil P / 64512 \\\\rceil $$\n\n Where:\n - $ P $ is the maximum number of ports required, calculated in Step 3.\n - $ \\\\lceil \\\\rceil $ is the ceiling (least integer) function, meaning round up to the next integer\n\n| **Note** : These formulas do not account for connection reuse, and instead calculate a \"worst-case\" scenario where no connections are reused. Actual connection reuse may vary. See [Connection Reuse](/apigee/docs/api-platform/security/nat-performance#connection-reuse) for the factors that contribute to an Apigee instance reusing an existing connection or opening a new one.\n\nExamples\n--------\n\n### Example 1\n\nIn this example, we expect a maximum of 10,000 TPS across 1 environment. The transactions are all `HTTP GET` requests\nand the 99th percentile transaction duration is 50 milliseconds (ms). These requests are unevenly served by a pool of\nservers behind 3 load balancer backends, with one of the load balancers taking 5,000 TPS, another taking 3,000 TPS, and the last\nload balancer taking 2,000 TPS.\n\nFor this example, the key values are as follows:\n\n- Maximum time per transaction: **50 ms**\n- Maximum TPS for the Apigee instance: **10,000**\n- Maximum TPS for a single backend: **5,000**\n- Number of Apigee environments: **1**\n\nUsing the formulas outlined earlier, we can calculate the number of NAT IPs required:\n\n1. $$ \\\\lceil (150 + 0.050) \\\\times 5000 \\\\rceil = \\\\lceil 150.050 \\\\times 5000 \\\\rceil = \\\\lceil 750250 \\\\rceil = 750250 $$\n\n The maximum number of NAT source ports required per backend, assuming no connection reuse, is **750,250**.\n 2. $$ max(4096 \\\\times 1, \\\\lceil {512 \\\\over 75} \\\\times 10000 \\\\rceil) + 6144 $$ \n $$ max(4096, \\\\lceil 6.827 \\\\times 10000 \\\\rceil) + 6144 $$ \n $$ max(4096, \\\\lceil 68270 \\\\rceil) + 6144 $$ \n $$ 68270 + 6144 = 74414 $$\n\n The minimum number of NAT source ports used by the Apigee runtime is **74,414**.\n3. $$ max(750250, 74414) = 750250 $$\n\n The maximum number of NAT source ports required per instance is **750,250**.\n4. $$ \\\\lceil 750250 / 64512 \\\\rceil = \\\\lceil 11.630 \\\\rceil = 12 $$\n\n The minimum number of NAT IPs required to support a maximum of 10,000 TPS of 50 ms each (or\n less), with a single backend IP and port pair supporting a maximum of 5,000 TPS, is\n **12**.\n\n### Example 2\n\nIn this example, we expect a maximum of 1,000 TPS across 20 Apigee environments. The\n99th percentile duration of these transactions is 5 seconds. These requests will be served by 8\ntarget backends, with traffic normally evenly distributed across all of them. With consideration\nfor maintenance and outages, a single backend is never expected to serve more than 250 TPS.\n\nFor this example, the key values are as follows:\n\n- Maximum time per transaction: **5s**\n- Maximum transactions per second (TPS): **1,000**\n- Maximum TPS for a single backend: **250**\n- Number of Apigee environments: **20**\n\nUsing the formulas outlined earlier, we can calculate the number of NAT IPs required:\n\n1. $$ \\\\lceil (150 + 5) \\\\times 250 \\\\rceil = \\\\lceil 155 \\\\times 250 \\\\rceil = \\\\lceil 38750 \\\\rceil = 38750 $$\n\n The maximum number of NAT source ports required per backend, assuming no connection reuse, is **38,750**.\n 2. $$ max(4096 \\\\times 20, \\\\lceil {512 \\\\over 75} \\\\times 1000 \\\\rceil) + 6144 $$ \n $$ max(81920, \\\\lceil 6.827 \\\\times 1000 \\\\rceil) + 6144 $$ \n $$ max(81920, \\\\lceil 6827 \\\\rceil) + 6144 $$ \n $$ 81920 + 6144 = 88064 $$\n\n The minimum number of NAT source ports used by the Apigee runtime is **88,064**.\n3. $$ max(38750, 88064) = 88064 $$\n\n The maximum number of NAT source ports required per instance is **88,064**.\n4. $$ \\\\lceil 88064 / 64512 \\\\rceil= \\\\lceil 1.365 \\\\rceil= 2 $$\n\n The minimum number of NAT IPs required to support a maximum of 1,000 TPS of 5 seconds each (or less),\n with a single backend IP and port pair supporting a maximum of 250 TPS, is **2**.\n\n### Example 3\n\nIn this example, we want to calculate the maximum TPS achievable with 2 NAT IPs to a single\ntarget backend. The maximum time per transaction is estimated to be 100 ms.\n\nFor this example, the key values are as follows:\n\n- **Maximum time per transaction**: 100ms\n- **Number of NAT IPs**: 2\n\nIn this case, we can use the formulas in Step 4 and Step 1 to calculate the maximum number of\nNAT source ports provided and the number of TPS those source ports can support:\n\n 1. $$ 2 = \\\\lceil P / 64512 \\\\rceil $$ \n $$ 129024 = P $$\n\n The maximum number of NAT source ports provided is **129,024**.\n 2. $$ 129024 = \\\\lceil (150 + 0.100) \\\\times B \\\\rceil $$ \n $$ 129024 = \\\\lceil 150.1 \\\\times B \\\\rceil $$ \n $$ \\\\lfloor 129024 / 150.1 \\\\rfloor = B $$ \n $$ \\\\lfloor 859.587 \\\\rfloor = B $$ \n $$ 859 = B $$\n\n The max TPS is **859** with 2 NAT IPs to a single backend, assuming no connection reuse."]]