공개 IP 주소가 있는 대상 백엔드와 Apigee 간의 Southbound 트래픽은 Cloud NAT를 사용하여 Apigee 인스턴스의 비공개 IP 주소를 공개 IP 주소로 변환합니다. 대상 백엔드에 IP 허용 목록이 필요한 경우 이그레스 트래픽에 고정 NAT IP를 예약하고 활성화할 수 있습니다.
이 주제에서는 예상 트래픽을 지원하는 데 필요한 최소 고정 NAT IP 수를 계산하는 방법을 설명합니다.
시작하기 전에
허용 목록을 지원하기 위해 고정 NAT IP 할당을 사용하기로 선택한 경우 예상 트래픽을 지원하는 데 필요한 최소 고정 IP 수를 계산해야 합니다. 이 계산을 하려면 다음 정보가 필요합니다.
트랜잭션당 최대 시간: 요청이 시작되어 응답이 끝날 때까지 트랜잭션에 소요되는 최대 시간(초)입니다.
초당 최대 트랜잭션 수(TPS): Apigee 인스턴스가 지원할 수 있는 초당 최대 트랜잭션 수입니다.
단일 고유 백엔드의 최대 TPS: 단일 백엔드가 지원할 수 있는 초당 최대 트랜잭션 수입니다.
최대 환경 수: 이 Apigee 인스턴스의 최대 환경 수입니다.
필요한 고정 IP 수 계산
다음 수식을 사용하여 고정으로 할당되어야 하는 NAT IP의 최소 수를 계산할 수 있습니다.
이 예시에서는 환경 1개에서 최대 10,000 TPS를 예상합니다. 트랜잭션은 모두 HTTP GET 요청이며 99번째 백분위수 트랜잭션 기간은 50밀리초(ms)입니다. 이러한 요청은 3개의 부하 분산기 백엔드 이면의 서버 풀에서 균일하지 않게 처리되는데, 부하 분산기 중 하나는 5,000 TPS를 받고, 다른 부하 분산기는 3,000 TPS를, 마지막 부하 분산기는 2,000 TPS를 받습니다.
단일 백엔드 IP 및 최대 5,000개의 TPS를 지원하는 단일 포트 IP에서 각각 50ms 이하의 최대 10,000 TPS를 지원하는 데 필요한 최소 NAT IP 수는 12개입니다.
예시 2
이 예시에서는 Apigee 환경 20개에서 최대 1,000 TPS를 예상합니다. 이 트랜잭션의 99번째 백분위수 기간은 5초입니다. 이러한 요청은 8개의 대상 백엔드에서 처리되며 트래픽은 일반적으로 모든 백엔드에 균일하게 분산됩니다. 유지보수 및 중단을 고려하여 단일 백엔드는 250개를 초과하는 TPS를 처리하지 않습니다.
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["이해하기 어려움","hardToUnderstand","thumb-down"],["잘못된 정보 또는 샘플 코드","incorrectInformationOrSampleCode","thumb-down"],["필요한 정보/샘플이 없음","missingTheInformationSamplesINeed","thumb-down"],["번역 문제","translationIssue","thumb-down"],["기타","otherDown","thumb-down"]],["최종 업데이트: 2025-08-18(UTC)"],[[["\u003cp\u003eThis document explains how to calculate the minimum number of static NAT IPs needed for Apigee to support outbound traffic to target backends that require IP allow-listing.\u003c/p\u003e\n"],["\u003cp\u003eThe calculation requires knowing the maximum time per transaction, maximum transactions per second (TPS) for both the Apigee instance and a single backend, and the number of Apigee environments.\u003c/p\u003e\n"],["\u003cp\u003eThe provided formulas determine the maximum number of NAT source ports required, which is then used to find the minimum number of NAT IPs needed, using a "worst-case" scenario that does not consider connection reuse.\u003c/p\u003e\n"],["\u003cp\u003eExamples are included to demonstrate how to apply these formulas in scenarios with different transaction rates, durations, and backend configurations to calculate required static NAT IPs.\u003c/p\u003e\n"],["\u003cp\u003eThe document is applicable to Apigee and not to Apigee hybrid.\u003c/p\u003e\n"]]],[],null,["# Calculating static NAT IP requirements\n\n*This page\napplies to **Apigee** , but not to **Apigee hybrid**.*\n\n\n*View [Apigee Edge](https://docs.apigee.com/api-platform/get-started/what-apigee-edge) documentation.*\n\nSouthbound traffic between Apigee and a target backend with a public IP address uses [Cloud NAT](https://cloud.google.com/nat/docs/overview)\nto translate the private IP address of your Apigee instance into a public IP address. If your target backend requires IP allow-listing, you can reserve and activate static NAT IPs for egress traffic.\nThis topic describes how to calculate the minimum number of static NAT IPs required to support anticipated traffic.\n\nBefore you begin\n----------------\n\nIf you choose to use static NAT IP allocation to support allow-listing, you will need to calculate\nthe minimum number of static IPs required to support anticipated traffic. For this calculation, you will need the following information:\n\n- **Maximum time per transaction**: This is the maximum time, in seconds, that a transaction will take, from the start of the request until the end of the response.\n- **Maximum transactions per second (TPS)**: This is the maximum number of transactions per second the Apigee instance can possibly support.\n- **Maximum TPS for a single unique backend**: This is the maximum number of transactions per second that any single backend can possibly support.\n- **Maximum number of environments**: The maximum number of environments on this Apigee instance.\n\n| **Note**: The maximums detailed above are a part of capacity planning for NAT, and must include consideration of possible traffic spikes, TPS increases for backends due to a maintenance or outage, and future environment additions. It is recommended to add some buffer to the projected numbers in order to handle unforeseen traffic increases, and to redo the NAT calculations when projections change.\n\nCalculate the number of static IPs required\n-------------------------------------------\n\nYou can use the following formulas to calculate the minimum number of NAT IPs that need to be statically assigned:\n\n1. Calculate the maximum number of NAT source ports required per backend as $ S $. \n $$ S = \\\\lceil (150 + T) \\\\times B \\\\rceil $$\n\n Where:\n - $ T $ is the maximum time per transaction, in seconds.\n - $ B $ is the maximum TPS for any single unique backend.\n - $ \\\\lceil \\\\rceil $ is the ceiling (least integer) function, meaning round up to the next integer\n2. Calculate the minimum ports used by the Apigee instance as $ N $. \n $$ N = max(4096 \\\\times E, \\\\lceil {512 \\\\over 75} \\\\times R \\\\rceil) + 6144 $$\n\n Where:\n - $ E $ is the number of Apigee environments.\n - $ R $ is the maximum TPS for the Apigee instance.\n - $ \\\\lceil \\\\rceil $ is the ceiling (least integer) function, meaning round up to the next integer\n - The $ \\\\mathit{max}() $ function takes the maximum of the two values.\n3. Take the maximum number of ports required as $ P $. \n $$ P = max(S, N) $$\n\n Where:\n - $ S $ is the maximum number of NAT source ports required, as calculated in Step 1.\n - $ N $ is the minimum number of ports used by the Apigee instance, as calculated in Step 2.\n - The $ \\\\mathit{max}() $ function takes the maximum of the two values.\n4. Calculate the minimum number of NAT IPs required as $ I $. \n $$ I = \\\\lceil P / 64512 \\\\rceil $$\n\n Where:\n - $ P $ is the maximum number of ports required, calculated in Step 3.\n - $ \\\\lceil \\\\rceil $ is the ceiling (least integer) function, meaning round up to the next integer\n\n| **Note** : These formulas do not account for connection reuse, and instead calculate a \"worst-case\" scenario where no connections are reused. Actual connection reuse may vary. See [Connection Reuse](/apigee/docs/api-platform/security/nat-performance#connection-reuse) for the factors that contribute to an Apigee instance reusing an existing connection or opening a new one.\n\nExamples\n--------\n\n### Example 1\n\nIn this example, we expect a maximum of 10,000 TPS across 1 environment. The transactions are all `HTTP GET` requests\nand the 99th percentile transaction duration is 50 milliseconds (ms). These requests are unevenly served by a pool of\nservers behind 3 load balancer backends, with one of the load balancers taking 5,000 TPS, another taking 3,000 TPS, and the last\nload balancer taking 2,000 TPS.\n\nFor this example, the key values are as follows:\n\n- Maximum time per transaction: **50 ms**\n- Maximum TPS for the Apigee instance: **10,000**\n- Maximum TPS for a single backend: **5,000**\n- Number of Apigee environments: **1**\n\nUsing the formulas outlined earlier, we can calculate the number of NAT IPs required:\n\n1. $$ \\\\lceil (150 + 0.050) \\\\times 5000 \\\\rceil = \\\\lceil 150.050 \\\\times 5000 \\\\rceil = \\\\lceil 750250 \\\\rceil = 750250 $$\n\n The maximum number of NAT source ports required per backend, assuming no connection reuse, is **750,250**.\n 2. $$ max(4096 \\\\times 1, \\\\lceil {512 \\\\over 75} \\\\times 10000 \\\\rceil) + 6144 $$ \n $$ max(4096, \\\\lceil 6.827 \\\\times 10000 \\\\rceil) + 6144 $$ \n $$ max(4096, \\\\lceil 68270 \\\\rceil) + 6144 $$ \n $$ 68270 + 6144 = 74414 $$\n\n The minimum number of NAT source ports used by the Apigee runtime is **74,414**.\n3. $$ max(750250, 74414) = 750250 $$\n\n The maximum number of NAT source ports required per instance is **750,250**.\n4. $$ \\\\lceil 750250 / 64512 \\\\rceil = \\\\lceil 11.630 \\\\rceil = 12 $$\n\n The minimum number of NAT IPs required to support a maximum of 10,000 TPS of 50 ms each (or\n less), with a single backend IP and port pair supporting a maximum of 5,000 TPS, is\n **12**.\n\n### Example 2\n\nIn this example, we expect a maximum of 1,000 TPS across 20 Apigee environments. The\n99th percentile duration of these transactions is 5 seconds. These requests will be served by 8\ntarget backends, with traffic normally evenly distributed across all of them. With consideration\nfor maintenance and outages, a single backend is never expected to serve more than 250 TPS.\n\nFor this example, the key values are as follows:\n\n- Maximum time per transaction: **5s**\n- Maximum transactions per second (TPS): **1,000**\n- Maximum TPS for a single backend: **250**\n- Number of Apigee environments: **20**\n\nUsing the formulas outlined earlier, we can calculate the number of NAT IPs required:\n\n1. $$ \\\\lceil (150 + 5) \\\\times 250 \\\\rceil = \\\\lceil 155 \\\\times 250 \\\\rceil = \\\\lceil 38750 \\\\rceil = 38750 $$\n\n The maximum number of NAT source ports required per backend, assuming no connection reuse, is **38,750**.\n 2. $$ max(4096 \\\\times 20, \\\\lceil {512 \\\\over 75} \\\\times 1000 \\\\rceil) + 6144 $$ \n $$ max(81920, \\\\lceil 6.827 \\\\times 1000 \\\\rceil) + 6144 $$ \n $$ max(81920, \\\\lceil 6827 \\\\rceil) + 6144 $$ \n $$ 81920 + 6144 = 88064 $$\n\n The minimum number of NAT source ports used by the Apigee runtime is **88,064**.\n3. $$ max(38750, 88064) = 88064 $$\n\n The maximum number of NAT source ports required per instance is **88,064**.\n4. $$ \\\\lceil 88064 / 64512 \\\\rceil= \\\\lceil 1.365 \\\\rceil= 2 $$\n\n The minimum number of NAT IPs required to support a maximum of 1,000 TPS of 5 seconds each (or less),\n with a single backend IP and port pair supporting a maximum of 250 TPS, is **2**.\n\n### Example 3\n\nIn this example, we want to calculate the maximum TPS achievable with 2 NAT IPs to a single\ntarget backend. The maximum time per transaction is estimated to be 100 ms.\n\nFor this example, the key values are as follows:\n\n- **Maximum time per transaction**: 100ms\n- **Number of NAT IPs**: 2\n\nIn this case, we can use the formulas in Step 4 and Step 1 to calculate the maximum number of\nNAT source ports provided and the number of TPS those source ports can support:\n\n 1. $$ 2 = \\\\lceil P / 64512 \\\\rceil $$ \n $$ 129024 = P $$\n\n The maximum number of NAT source ports provided is **129,024**.\n 2. $$ 129024 = \\\\lceil (150 + 0.100) \\\\times B \\\\rceil $$ \n $$ 129024 = \\\\lceil 150.1 \\\\times B \\\\rceil $$ \n $$ \\\\lfloor 129024 / 150.1 \\\\rfloor = B $$ \n $$ \\\\lfloor 859.587 \\\\rfloor = B $$ \n $$ 859 = B $$\n\n The max TPS is **859** with 2 NAT IPs to a single backend, assuming no connection reuse."]]