Tarification de Vertex AI

Les coûts de Vertex AI restent identiques à ceux des produits existants remplacés par Vertex AI. Par exemple, les coûts associés à l'entraînement d'un modèle de classification d'images AutoML sont identiques, que vous l'entraîniez avec Vertex AI ou AutoML Vision.

Les tarifs sont indiqués en dollars américains (USD). Si vous ne payez pas en USD, les tarifs indiqués dans votre devise sur la page des SKU Cloud Platform s'appliquent.

Tarifs de Vertex AI par rapport aux tarifs de l'ancienne version d'AI Platform

Les tarifs des opérations Vertex AI et des opérations "anciennes" équivalentes sont les mêmes pour chaque opération. Par exemple, si vous entraînez un modèle à l'aide d'AI Platform Training, le coût est le même que pour l'entraînement d'un modèle à l'aide de Vertex AI Training.

Si vous utilisez d'anciens produits AI Platform, votre facturation peut être exprimée en unités de ML.

Modèles AutoML Vertex

Pour les modèles AutoML Vertex, vous payez trois activités principales :

  • Entraîner le modèle
  • Déployer le modèle sur un point de terminaison
  • Utiliser le modèle pour effectuer des prédictions

Vertex AI utilise des configurations de machine prédéfinies pour les modèles AutoML Vertex, et le tarif horaire pour ces activités reflète l'utilisation des ressources.

La durée requise dépend de la taille et de la complexité de vos données d'entraînement. Les modèles doivent être déployés avant de pouvoir fournir des prédictions ou des explications en ligne.

Vous payez pour chaque modèle déployé sur un point de terminaison, même si aucune prédiction n'est effectuée. Vous devez annuler le déploiement de votre modèle pour ne pas générer de frais supplémentaires. Les modèles qui ne sont pas déployés ou dont le déploiement a échoué ne sont pas facturés.

Vous ne payez que les heures de calcul utilisées. Si l'entraînement échoue pour une raison autre qu'une annulation initiée par l'utilisateur, le temps ne vous est pas facturé. L'entraînement vous est facturé si vous annulez l'opération.

Sélectionnez un type de modèle ci-dessous pour accéder aux informations tarifaires.

Données d'image

Operation Prix par nœud-heure (classification) Prix par nœud-heure (détection d'objets)
Formation 3,465 $ 3,465 $
Entraînement (modèle Edge sur appareil) 18,00 $ 18,00 $
Déploiement et prédiction en ligne 1,375 $ 2,002 $
Prédiction par lot 2,222 $ 2,222 $

Statistiques relatives aux vidéos

Opération Prix par nœud-heure (classification, suivi des objets) Prix par nœud-heure (reconnaissance des actions)
Entraînement 3,234 $ 3,300 $
Entraînement (modèle Edge sur appareil) 10,78 $ 11,00 $
Prédictions 0,462 $ 0,550 $

Données tabulaires

Operation Prix par nœud-heure pour la classification/régression Prix des prévisions
Formation 21,252 $ 21,252 $
Prédiction Même prix que les prédictions pour les modèles entraînés personnalisés 1 $ pour 1 000 prévisions (lot uniquement)

Text data

Operation Prix
Ancienne importation de données (fichiers PDF uniquement)

1 000 premières pages gratuites chaque mois

1,50 $ les 1 000 pages

0,60 $ les 1 000 pages lorsque le nombre de pages est supérieur à 5 000 000

Entraînement 3,30 $ par heure
Deployment 0,05 $ par heure
Prédiction

5,00 $ par tranche de 1 000 enregistrements texte

25 $ par tranche de 1 000 pages de document, comme les fichiers PDF (version antérieure uniquement)

Les prix des requêtes de prédiction de texte AutoML Vertex sont calculés en fonction du nombre d'enregistrements texte que vous envoyez pour analyse. Un enregistrement texte correspond à du texte brut qui contient jusqu'à 1 000 caractères Unicode (espaces blancs et caractères de balisage tels que les balises HTML ou XML inclus).

Si le texte fourni dans une requête de prédiction contient plus de 1 000 caractères, chaque bloc de 1 000 caractères est compté comme un enregistrement texte. Par exemple, si vous envoyez trois requêtes contenant respectivement 800, 1 500 et 600 caractères, quatre enregistrements texte vous seront facturés : un pour la première requête (800), deux pour la deuxième (1 500) et un pour la troisième requête (600).

Frais de prédiction pour Vertex Explainable AI

Les calculs associés à Vertex Explainable AI sont facturés au même tarif que la prédiction. Cependant, le traitement des explications est plus long que celui des prédictions standards. L'utilisation intensive de Vertex Explainable AI avec l'autoscaling peut donc entraîner le démarrage de davantage de nœuds, et ainsi augmenter les frais encourus pour les prédictions.

Modèles entraînés personnalisés

Entraînement

Les tableaux ci-dessous indiquent le coût par heure approximatif des différentes configurations de l'entraînement. Vous pouvez choisir une configuration personnalisée pour les types de machines sélectionnés. Pour calculer les prix, additionnez les coûts des machines virtuelles que vous utilisez.

Si vous utilisez des types de machines Compute Engine et que vous y associez des accélérateurs, les frais qui y sont liés sont distincts. Pour calculer ces frais, multipliez les tarifs indiqués dans le tableau sur les accélérateurs ci-dessous par le nombre d'accélérateurs de chaque type utilisés.

Types de machine

Amériques

Europe

Asie-Pacifique

Si vous ne payez pas en USD, les tarifs indiqués dans votre devise sur la page des codes SKU Cloud Platform s'appliquent.

Accélérateurs

Amériques

Europe

Asie-Pacifique

Si vous ne payez pas en USD, les tarifs indiqués dans votre devise sur la page des codes SKU Cloud Platform s'appliquent.

* Le prix d'un entraînement à l'aide d'un pod Cloud TPU est basé sur le nombre de cœurs du pod. Le nombre de cœurs dans une série d'annonces est toujours un multiple de 32. Pour déterminer le prix d'entraînement sur un pod de plus de 32 cœurs, multipliez le prix d'un pod à 32 cœurs, puis multipliez le résultat par le nombre de cœurs, divisé par 32. Par exemple, pour un pod 128 cœurs, le prix est de (32-core Pod price) * (128/32). Pour en savoir plus sur les pods Cloud TPU disponibles pour une région spécifique, consultez la page Architecture système de la documentation Cloud TPU.

Disks

Amériques

Europe

Asie-Pacifique

Si vous ne payez pas en USD, les tarifs indiqués dans votre devise sur la page des codes SKU Cloud Platform s'appliquent.

  • Toute utilisation est soumise aux règles de quotas de Vertex AI.
  • Vous devez stocker vos données et vos fichiers de programme dans des buckets Google Cloud Storage pendant le cycle de vie de Vertex AI. En savoir plus sur l'utilisation de Cloud Storage

L'entraînement de vos modèles vous est facturé à partir du moment où les ressources sont provisionnées pour une tâche et jusqu'à la fin de celle-ci.

Niveaux d'évolutivité pour les configurations prédéfinies (AI Platform Training)

Vous pouvez contrôler le type de cluster de traitement à utiliser pour l'entraînement de votre modèle. La méthode la plus simple consiste à choisir parmi l'une des configurations prédéfinies appelées niveaux d'évolutivité. En savoir plus sur les niveaux d'évolutivité

Types de machines pour les configurations personnalisées

Si vous utilisez Vertex AI ou sélectionnez CUSTOM comme niveau d'évolutivité pour AI Platform Training, vous contrôlez le nombre et le type de machines virtuelles à utiliser pour le maître du cluster, le nœud de calcul et le serveur de paramètres. Apprenez-en plus sur les types de machines pour Vertex AI et les types de machines pour AI Platform Training.

Le coût de l'entraînement avec un cluster de traitement personnalisé correspond à la somme de toutes les machines que vous indiquez. La durée totale de la tâche, et non le temps de traitement actif de chaque machine, vous est facturée.

Calculer le coût de l'entraînement à l'aide des unités de ML consommées

Les unités ML consommées (unités de machine learning consommées) indiquées sur la page Informations sur la tâche correspondent aux unités d'entraînement pour la durée de la tâche prise en compte. Pour effectuer vos calculs avec des unités ML consommées, utilisez la formule suivante :

(Consumed ML units) * (Machine type cost)

Exemple :

  • Un data scientist exécute une tâche d'entraînement sur une instance de machine e2-standard-4 dans la région us-west1 (Oregon). Le champ Unités de ML consommées sur la page des détails de l'offre d'emploi indique "55,75". Le calcul est le suivant :

    55.75 consumed ML units * 0.154114

    Pour un total de 8,59 $pour le poste.

Pour accéder à la page Informations sur la tâche, consultez la liste des tâches et cliquez sur le lien correspondant à la tâche concernée.

Prédiction et explication

Le tableau suivant indique le coût par nœud-heure des prédictions par lot et en ligne ainsi que des explications en ligne. Les nœuds-heure correspondent au temps durant lequel une machine virtuelle exécute une tâche de prédiction ou durant lequel elle est disponible pour traiter les requêtes de prédiction ou d'explication.

Amériques

Prédiction
Prédictions et explications
Types de machines – prix par nœud-heure
n1-standard-2 Tarifs approximatifs :
us-east4 0,123 $
northamerica-northeast1 0,1203 $
Autres régions des Amériques 0,1093 $
n1-standard-4 Tarifs approximatifs :
us-east4 0,2461 $
northamerica-northeast1 0,2405 $
Autres régions des Amériques 0,2186 $
n1-standard-8 Tarifs approximatifs :
us-east4 0,4922 $
northamerica-northeast1 0,4811 $
Autres régions des Amériques 0,4372 $
n1-standard-16 Tarifs approximatifs :
us-east4 0,9843 $
northamerica-northeast1 0,9622 $
Autres régions des Amériques 0,8744 $
n1-standard-32 Tarifs approximatifs :
us-east4 1,9687 $
northamerica-northeast1 1,9243 $
Autres régions des Amériques 1,7488 $
n1-highmem-2 Tarifs approximatifs :
us-east4 0,1532 $
northamerica-northeast1 0,1498 $
Autres régions des Amériques 0,1361 $
n1-highmem-4 Tarifs approximatifs :
us-east4 0,3064 $
northamerica-northeast1 0,2995 $
Autres régions des Amériques 0,2723 $
n1-highmem-8 Tarifs approximatifs :
us-east4 0,6129 $
northamerica-northeast1 0,5991 $
Autres régions des Amériques 0,5445 $
n1-highmem-16 Tarifs approximatifs :
us-east4 1,2257 $
northamerica-northeast1 1,1982 $
Autres régions des Amériques 1,089 $
n1-highmem-32 Tarifs approximatifs :
us-east4 2,4515 $
northamerica-northeast1 2,3963 $
Autres régions des Amériques 2,178 $
n1-highcpu-2 Tarifs approximatifs :
us-east4 0,0918 $
northamerica-northeast1 0,0897 $
Autres régions des Amériques 0,0815 $
n1-highcpu-4 Tarifs approximatifs :
us-east4 0,1835 $
northamerica-northeast1 0,1794 $
Autres régions des Amériques 0,163 $
n1-highcpu-8 Tarifs approximatifs :
us-east4 0,3671 $
northamerica-northeast1 0,3588 $
Autres régions des Amériques 0,326 $
n1-highcpu-16 Tarifs approximatifs :
us-east4 0,7341 $
northamerica-northeast1 0,7176 $
Autres régions des Amériques 0,6519 $
n1-highcpu-32 Tarifs approximatifs :
us-east4 1,4683 $
northamerica-northeast1 1,4352 $
Autres régions des Amériques 1,3039 $

Europe

Prédiction
Prédictions et explications
Types de machines – prix par nœud-heure
n1-standard-2 Tarifs approximatifs :
europe-west2 0,1408 $
Autres régions d'Europe $0,1265 $
n1-standard-4 Tarifs approximatifs :
europe-west2 0,2815 $
Autres régions d'Europe 0,2531 $
n1-standard-8 Tarifs approximatifs :
europe-west2 0,563 $
Autres régions d'Europe 0,5061 $
n1-standard-16 Tarifs approximatifs :
europe-west2 1,126 $
Autres régions d'Europe 1,0123 $
n1-standard-32 Tarifs approximatifs :
europe-west2 2,2521 $
Autres régions d'Europe 2,0245 $
n1-highmem-2 Tarifs approximatifs :
europe-west2 0,1753 $
Autres régions d'Europe 0,1575 $
n1-highmem-4 Tarifs approximatifs :
europe-west2 0,3506 $
Autres régions d'Europe 0,3151 $
n1-highmem-8 Tarifs approximatifs :
europe-west2 0,7011 $
Autres régions d'Europe 0,6302 $
n1-highmem-16 Tarifs approximatifs :
europe-west2 1,4022 $
Autres régions d'Europe 1,2603 $
n1-highmem-32 Tarifs approximatifs :
europe-west2 2,8044 $
Autres régions d'Europe 2,5206 $
n1-highcpu-2 Tarifs approximatifs :
europe-west2 0,105 $
Autres régions d'Europe 0,0944 $
n1-highcpu-4 Tarifs approximatifs :
europe-west2 0,21 USD
Autres régions d'Europe 0,1888 $
n1-highcpu-8 Tarifs approximatifs :
europe-west2 0,4199 $
Autres régions d'Europe 0,3776 $
n1-highcpu-16 Tarifs approximatifs :
europe-west2 0,8398 $
Autres régions d'Europe 0,7552 $
n1-highcpu-32 Tarifs approximatifs :
europe-west2 1,6796 $
Autres régions d'Europe 1,5104 $

Asie-Pacifique

Prédiction
Prédictions et explications
Types de machines – prix par nœud-heure
n1-standard-2 Tarifs approximatifs :
asia-northeast1 0,1402 $
asia-southeast1 0,1348 $
australia-southeast1 0,155 $
Autres régions d'Asie-Pacifique $0,1265 $
n1-standard-4 Tarifs approximatifs :
asia-northeast1 0,2803 $
asia-southeast1 0,2695 $
australia-southeast1 0,31 $
Autres régions d'Asie-Pacifique 0,2531 $
n1-standard-8 Tarifs approximatifs :
asia-northeast1 0,5606 $
asia-southeast1 0,5391 $
australia-southeast1 0,6201 $
Autres régions d'Asie-Pacifique 0,5061 $
n1-standard-16 Tarifs approximatifs :
asia-northeast1 1,1213 $
asia-southeast1 1,0782 $
australia-southeast1 1,2401 $
Autres régions d'Asie-Pacifique 1,0123 $
n1-standard-32 Tarifs approximatifs :
asia-northeast1 2,2426 $
asia-southeast1 2,1564 $
australia-southeast1 2,4802 $
Autres régions d'Asie-Pacifique 2,0245 $
n1-highmem-2 Tarifs approximatifs :
asia-northeast1 0,1744 $
asia-southeast1 0,1678 $
australia-southeast1 0,193 $
Autres régions d'Asie-Pacifique 0,1575 $
n1-highmem-4 Tarifs approximatifs :
asia-northeast1 0,3489 $
asia-southeast1 0,3357 $
australia-southeast1 0,3861 $
Autres régions d'Asie-Pacifique 0,3151 $
n1-highmem-8 Tarifs approximatifs :
asia-northeast1 0,6977 $
asia-southeast1 0,6713 $
australia-southeast1 0,7721 $
Autres régions d'Asie-Pacifique 0,6302 $
n1-highmem-16 Tarifs approximatifs :
asia-northeast1 1,3955 $
asia-southeast1 1,3426 $
australia-southeast1 1,5443 $
Autres régions d'Asie-Pacifique 1,2603 $
n1-highmem-32 Tarifs approximatifs :
asia-northeast1 2,791 $
asia-southeast1 2,6852 $
australia-southeast1 3,0885 $
Autres régions d'Asie-Pacifique 2,5206 $
n1-highcpu-2 Tarifs approximatifs :
asia-northeast1 0,1046 $
asia-southeast1 0,1005 $
australia-southeast1 0,1156 $
Autres régions d'Asie-Pacifique 0,0944 $
n1-highcpu-4 Tarifs approximatifs :
asia-northeast1 0,2093 $
asia-southeast1 0,201 $
australia-southeast1 0,2312 $
Autres régions d'Asie-Pacifique 0,1888 $
n1-highcpu-8 Tarifs approximatifs :
asia-northeast1 0,4186 $
asia-southeast1 0,4021 $
australia-southeast1 0,4624 $
Autres régions d'Asie-Pacifique 0,3776 $
n1-highcpu-16 Tarifs approximatifs :
asia-northeast1 0,8371 $
asia-southeast1 0,8041 $
australia-southeast1 0,9249 $
Autres régions d'Asie-Pacifique 0,7552 $
n1-highcpu-32 Tarifs approximatifs :
asia-northeast1 1,6742 $
asia-southeast1 1,6082 $
australia-southeast1 1,8498 $
Autres régions d'Asie-Pacifique 1,5104 $

Chaque type de machine est facturé comme deux codes SKU distincts sur votre facture Google Cloud:

  • Coût du processeur virtuel, mesuré en processeurs virtuels-heure
  • Coût de la mémoire RAM, mesurée en Go-heure

Les tarifs des types de machines indiqués dans le tableau précédent sont basés sur une approximation du coût horaire total pour chaque nœud de prédiction d'une version de modèle utilisant ce type de machine. Par exemple, étant donné qu'un type de machine n1-highcpu-32 inclut 32 processeurs virtuels et 28,8 Go de mémoire RAM, le tarif horaire par nœud est égal à 32 processeurs virtuels-heure + 28,8 Go-heure.

Les tarifs indiqués dans le tableau précédent sont fournis pour vous aider à estimer vos coûts de prédiction. Le tableau suivant indique les tarifs des processeurs virtuels et de la mémoire RAM pour les types de machines de prédiction, qui reflètent plus précisément les codes SKU qui vous seront facturés:

Amériques

Codes SKU des types de machines de prédiction
Processeur virtuel
Virginie du Virginie (us-east4) 0,04094575 $ par processeur virtuel-heure
Montréal (northamerica-northeast1) 0,0400223 $ par processeur virtuel-heure
Autres régions des Amériques 0,03635495 $ par processeur virtuel-heure
RAM
Virginie du Virginie (us-east4) 0,00548665 $ par Go-heure
Montréal (northamerica-northeast1) 0,0053636 $ par Go-heure
Autres régions des Amériques 0,0048783 $ par Go-heure

Europe

Codes SKU des types de machines de prédiction
Processeur virtuel
Londres (europe-west2) 0,0468395 $ par processeur virtuel-heure
Autres régions d'Europe 0,0421268 $ par processeur virtuel-heure
RAM
Londres (europe-west2) 0,0032767 $ par Go-heure
Autres régions d'Europe 0,0056373 $ par Go-heure

Asie-Pacifique

Codes SKU des types de machines de prédiction
Processeur virtuel
Tokyo (asia-northeast1) 0,0467107 $ par processeur virtuel-heure
Singapour (asia-southeast1) 0,04484885 $ par processeur virtuel-heure
Sydney (australia-southeast1) 0,0515844 $ par processeur virtuel-heure
Autres régions d'Asie-Pacifique 0,0421268 $ par processeur virtuel-heure
RAM
Tokyo (asia-northeast1) 0,00623185 $ par Go-heure
Singapour (asia-southeast1) 0,0060099 $ par Go-heure
Sydney (australia-southeast1) 0,00691265 $ par Go-heure
Autres régions d'Asie-Pacifique 0,0056373 $ par Go-heure

Vous pouvez également utiliser des accélérateurs GPU pour les prédictions. Les GPU entraînent des frais supplémentaires en plus de ceux décrits dans le tableau précédent. Le tableau suivant indique les tarifs pour chaque type de GPU :

Amériques

Accélérateurs – Prix par heure
NVIDIA_TESLA_K80
Iowa (us-central1) 0,5175 $
Caroline du Sud (us-east1) 0,5175 $
NVIDIA_TESLA_P4
Iowa (us-central1) 0,6900 $
Virginie du Virginie (us-east4) 0,6900 $
Montréal (northamerica-northeast1) 0,7475 $
NVIDIA_TESLA_P100
Oregon (us-west1) 1,6790 $
Iowa (us-central1) 1,6790 $
Caroline du Sud (us-east1) 1,6790 $
NVIDIA_TESLA_T4
Oregon (us-west1) 0,4025 $
Iowa (us-central1) 0,4025 $
Caroline du Sud (us-east1) 0,4025 $
NVIDIA_TESLA_V100
Oregon (us-west1) 2,8520 $
Iowa (us-central1) 2,8520 $

Europe

Accélérateurs – Prix par heure
NVIDIA_TESLA_K80
Belgique (europe-west1) 0,5635 $
NVIDIA_TESLA_P4
Pays-Bas (europe-west4) 0,7475 $
NVIDIA_TESLA_P100
Belgique (europe-west1) 1,8400 $
NVIDIA_TESLA_T4
Londres (europe-west2) 0,4715 $
Pays-Bas (europe-west4) 0,4370 $
NVIDIA_TESLA_V100
Pays-Bas (europe-west4) 2,9325 $

Asie-Pacifique

Accélérateurs – Prix par heure
NVIDIA_TESLA_K80
Taïwan (asia-east1) 0,5635 $
NVIDIA_TESLA_P4
Singapour (asia-southeast1) 0,7475 $
Sydney (australia-southeast1) 0,7475 $
NVIDIA_TESLA_P100
Taïwan (asia-east1) 1,8400 $
NVIDIA_TESLA_T4
Tokyo (asia-northeast1) 0,4255 $
Singapour (asia-southeast1) 0,4255 $
Séoul (asia-northeast3) 0,4485 $
NVIDIA_TESLA_V100 Non disponible

Les tarifs sont indiqués par GPU. Aussi, si vous utilisez plusieurs GPU par nœud de prédiction (ou si votre version évolue pour utiliser plusieurs nœuds), les coûts évoluent en conséquence.

AI Platform Prediction réalise des prédictions à partir de votre modèle en exécutant plusieurs machines virtuelles ("nœuds"). Par défaut, Vertex AI ajuste automatiquement le nombre de nœuds en cours d'exécution à tout moment. Pour la prédiction en ligne, le nombre de nœuds s'adapte en fonction de la demande. Chaque nœud peut répondre à plusieurs requêtes de prédiction. Pour la prédiction par lot, le nombre de nœuds s'adapte afin de réduire la durée totale d'exécution de la tâche. Vous pouvez personnaliser le scaling des nœuds de prédiction.

Pour votre modèle, la durée d'exécution de chaque nœud vous est facturée, y compris dans les cas suivants :

  • Lorsque le nœud traite une tâche de prédiction par lot
  • Lorsque le nœud traite une requête de prédiction en ligne
  • Lorsque le nœud est disponible pour les prédictions en ligne

L'heure de nœud correspond au coût d'exécution d'un nœud durant une heure. Le tableau des tarifs relatifs aux prédictions indique le prix d'un nœud-heure, qui varie selon les régions et le type de prédiction (en ligne ou par lot).

Les nœuds-heure peuvent être fractionnés afin d'être consommés par tranches. Par exemple, l'exécution d'un nœud durant 30 minutes coûte 0,5 nœud-heure.

Calcul des coûts pour les anciens types de machines (MLS1) et la prédiction par lot

  • La durée d'exécution d'un nœud se mesure par tranches d'une minute et est arrondie à la minute supérieure. Par exemple, si un nœud s'exécute durant 20,1 minutes, son coût d'exécution sera calculé sur la base de 21 minutes.
  • Les durées d'exécution de nœud inférieures à 10 minutes sont arrondies à 10 minutes. Par exemple, si un nœud s'exécute durant 3 minutes seulement, son coût d'exécution sera calculé sur la base de 10 minutes.

Calcul des coûts pour les types de machines Compute Engine (N1)

  • La durée d'exécution d'un nœud est facturée par tranches de 30 secondes. Ainsi, toutes les 30 secondes, votre projet est facturé pour 30 secondes d'utilisation des processeurs virtuels, de la mémoire RAM et des ressources GPU alors utilisés par votre nœud.

Informations supplémentaires sur le scaling automatique des nœuds de prédiction

Prédiction en ligne Prédiction par lot
La priorité du scaling est de réduire la latence des requêtes individuelles. Le service permet à votre modèle de rester disponible pendant quelques minutes d'inactivité après le traitement d'une requête. La priorité du scaling est de réduire le temps total de la tâche.
Le scaling a un effet sur le montant total qui vous est facturé chaque mois : plus vos requêtes sont nombreuses et fréquentes, plus le volume de nœuds utilisés est important. Le scaling doit avoir peu d'effet sur le prix de votre tâche, même si la création d'un nœud engendre des frais.

Vous pouvez choisir de laisser le service s'adapter en fonction du trafic (scaling automatique) ou définir un nombre de nœuds à exécuter en permanence pour éviter la latence (scaling manuel).

  • Si vous sélectionnez le scaling automatique, le nombre de nœuds évolue automatiquement. Pour les déploiements des anciens types de machines AI Platform Prediction (MLS1), le nombre de nœuds peut être réduit à zéro pour les périodes sans trafic. Pour les déploiements Vertex AI et les autres types de déploiements AI Platform Prediction, le nombre de nœuds ne peut pas être réduit à zéro.
  • Si vous sélectionnez le scaling manuel, vous spécifiez un nombre de nœuds à exécuter en permanence. La totalité du temps d'exécution des nœuds vous est alors facturée, du déploiement jusqu'à la suppression de la version du modèle.
Vous pouvez modifier le scaling en définissant un nombre maximal de nœuds à utiliser pour une tâche de prédiction par lot et en définissant le nombre de nœuds à exécuter pour un modèle lorsque vous le déployez.

Coût minimal de 10 minutes

Souvenez-vous que si un nœud s'exécute pendant moins de 10 minutes, vous serez quand même facturé 10 minutes. Par exemple, supposons que vous utilisiez le scaling automatique. Pendant une période sans trafic, si vous utilisez un ancien type de machine (MLS1) dans AI Platform Prediction, aucun nœud n'est utilisé. Si vous utilisez Vertex AI ou d'autres types de machines dans AI Platform Prediction, au moins un nœud est toujours utilisé. La réception d'une seule requête de prédiction en ligne déclenche l'exécution d'un nœud pour traiter la requête. Après avoir traité la requête, le nœud continue de s'exécuter et reste disponible quelques minutes. Ensuite, il s'arrête. Même si le nœud a fonctionné moins de 10 minutes, son exécution vous est facturée 10 minutes de nœud (0,17 nœud-heure).

De même, si un nœud est ajouté pour traiter plusieurs requêtes de prédiction en ligne pendant 10 minutes avant de s'arrêter, vous serez facturé 10 minutes de nœud.

Vous pouvez utiliser le scaling manuel pour contrôler précisément le nombre de nœuds à exécuter durant une période donnée. Toutefois, si un nœud s'exécute pendant moins de 10 minutes, vous êtes quand même facturé 10 minutes.

En savoir plus sur l'attribution et le scaling des nœuds

Les tâches de prédiction par lot sont facturées une fois qu'elles sont terminées

Les tâches de prédiction par lot sont facturées une fois qu'elles sont terminées, et non de manière incrémentielle au cours de la tâche. Les alertes budgétaires Cloud Billing que vous avez configurées ne sont pas déclenchées lorsqu'une tâche est en cours d'exécution. Avant de démarrer une tâche volumineuse, nous vous recommandons d'abord d'exécuter des tâches de benchmark des coûts avec de petites données d'entrée.

Exemple de calcul de frais liés aux prédictions

Une agence immobilière implantée dans la région des Amériques exécute une prédiction hebdomadaire de la valeur des biens immobiliers dans la zone qu'elle couvre. En un mois, elle exécute des prédictions pendant quatre semaines, par lots de 3920, 4277, 3849 et 3961. Les tâches sont traitées par un seul nœud, et chaque instance nécessite en moyenne 0.72 seconde de traitement.

Commencez par calculer la durée d'exécution de chaque tâche :

3920 instances * (0.72 seconds / 1 instance) * (1 minute / 60 seconds) = 47.04 minutes
4277 instances * (0.72 seconds / 1 instance) * (1 minute / 60 seconds) = 51.324 minutes
3849 instances * (0.72 seconds / 1 instance) * (1 minute / 60 seconds) = 46.188 minutes
3961 instances * (0.72 seconds / 1 instance) * (1 minute / 60 seconds) = 47.532 minutes

L'exécution de chaque tâche a duré plus de 10 minutes, et sera donc facturée à la minute de traitement.

($0.0909886 / 1 node hour) * (1 hour / 60 minutes) * 48 minutes * 1 node = $0.0632964
($0.0909886 / 1 node hour) * (1 hour / 60 minutes) * 52 minutes * 1 node = $0.0685711
($0.0909886 / 1 node hour) * (1 hour / 60 minutes) * 47 minutes * 1 node = $0.061977725
($0.0909886 / 1 node hour) * (1 hour / 60 minutes) * 48 minutes * 1 node = $0.0632964

Le coût total s'élève à 0,26 $ pour le mois.

Dans cet exemple, nous avons supposé que les tâches s'exécutaient sur un seul nœud et prenaient le même temps pour chaque instance d'entrée. En utilisation réelle, veillez à prendre en compte plusieurs nœuds et à utiliser le temps d'exécution effectif de chacun d'eux dans vos calculs.

Frais pour Vertex Explainable AI

Vertex Explainable AI est disponible sans frais supplémentaires pour les prédictions. Cependant, le traitement des explications est plus long que celui des prédictions standards. L'utilisation intensive de Vertex Explainable AI avec l'autoscaling peut donc entraîner le démarrage de davantage de nœuds, et ainsi augmenter vos frais pour les prédictions.

Vertex AI Pipelines

Vertex AI Pipelines facture des frais d'exécution de 0,03 $ par exécution de pipeline. Les frais d'exécution ne vous sont pas facturés pendant la version bêta. Vous payez également les ressources Google Cloud que vous utilisez avec Vertex AI Pipelines, telles que les ressources Compute Engine utilisées par les composants du pipeline (facturées au même tarif que pour l'entraînement Vertex AI.) Enfin, vous êtes responsable du coût des services (tels que Dataflow) appelés par votre pipeline.

Feature Store Vertex AI

Les tarifs du Feature Store Vertex AI sont basés sur la quantité de données de caractéristiques stockées en ligne et hors connexion, ainsi que sur la disponibilité de la diffusion en ligne. Les nœuds-heure correspondent au temps qu'une machine virtuelle passe à diffuser des données de caractéristiques ou durant lequel elle est disponible pour traiter les requêtes de données de caractéristiques.

Operation Price
Stockage en ligne 0,25 $ par Go/mois
Stockage hors connexion 0,023 $ par Go/mois
Diffusion en ligne 0,94 $ par nœud et par heure
Exportation par lot 0,005 $ par Go

Lorsque vous activez le contrôle de la valeur des fonctionnalités, la facturation inclut les frais applicables ci-dessus, en plus des frais applicables suivants:

  • 3,50 $ par Go pour l'ensemble des données analysées. Lorsque l'analyse des instantanés est activée, les instantanés des données de Vertex AI Feature Store sont inclus. Lorsque l'analyse des fonctionnalités d'importation est activée, les lots de données ingérées sont inclus.
  • Les frais supplémentaires liés aux autres opérations Vertex AI Feature Store utilisées pour la surveillance des caractéristiques sont les suivants :
    • La fonctionnalité d'analyse des instantanés prend régulièrement un instantané des valeurs des fonctionnalités en fonction de votre configuration pour l'intervalle de surveillance.
    • Les frais d'exportation d'instantanés sont les mêmes que pour une exportation groupée par lot.

Exemple d'analyse d'instantanés

Un data scientist active la surveillance des caractéristiques pour son magasin de fonctionnalités Vertex AI et active la surveillance pour une analyse quotidienne des instantanés. Un pipeline s'exécute quotidiennement pour surveiller les types d'entités. Le pipeline analyse 2 Go de données dans Vertex AI Feature Store et exporte un instantané contenant 0,1 Go de données. Le coût total pour une analyse quotidienne est de:

(0.1 GB * $3.50) + (2 GB * $0.005) = $0.36

Exemple d'analyse d'ingestion

Un data scientist active la surveillance des valeurs pour son magasin de fonctionnalités Vertex AI et active la surveillance des opérations d'ingestion. Une opération d'ingestion importe 1 Go de données dans Vertex AI Feature Store. Le coût total pour la surveillance de la valeur des caractéristiques est de:

(1 GB * $3.50) = $3.50

Vertex ML Metadata

Le stockage de métadonnées est mesuré en gigaoctets binaires (Gio), et 1 Gio correspond à 1 073 741 824 octets. Cette unité de mesure est parfois appelée gibibyte.

Vertex ML Metadata facture 10 $ par gibioctet (Gio) par mois pour le stockage de métadonnées.

Vertex AI TensorBoard

Pour utiliser Vertex AI TensorBoard, demandez à l'administrateur IAM du projet de vous attribuer le rôle Vertquo AI TensorBoard Web App User". Le rôle d'administrateur Vertex AI a également accès.

Vertex AI TensorBoard facture des frais mensuels de 300 $ par utilisateur actif unique. Les utilisateurs actifs sont mesurés via l'interface utilisateur Vertex AI TensorBoard. Vous payez également les ressources Google Cloud que vous utilisez avec Vertex AI TensorBoard, telles que les journaux TensorBoard stockés dans Cloud Storage.

Vertex AI Vizier

Vertex AI Vizier est un service d'optimisation par boîte noire intégré à Vertex AI. Le modèle de tarification de Vertex AI Vizier comprend les éléments suivants :

  • Aucuns frais ne s'appliquent pour les essais qui utilisent RANDOM_SEARCH et GRID_SEARCH. En savoir plus sur les algorithmes de recherche
  • Les 100 premiers essais de Vertex AI Vizier par mois civil sont disponibles gratuitement. Les essais utilisant RANDOM_SEARCH et GRID_SEARCH ne sont pas pris en compte dans ce total.
  • Après 100 essais de Vertex AI Vizier, les essais ultérieurs effectués au cours du même mois calendaire sont facturés 1 $ par essai (les essais utilisant RANDOM_SEARCH ou GRID_SEARCH n'entraînent aucuns frais).

Vertex AI Matching Engine

La tarification du service plus proches voisins approximatifs de Vertex AI Matching Engine comprend les éléments suivants :

  • Tarifs par nœud-heure pour chaque VM utilisée pour héberger un index déployé.
  • Coûts liés à la création d'index et à la mise à jour des index existants.

Les données traitées lors de la création et de la mise à jour des index sont mesurées en gigaoctets binaires (Gio) ; 1 Gio correspond à 1 073 741 824 octets. Cette unité de mesure est parfois appelée gibibyte.

Vertex AI Matching Engine facture 3 $par gibioctet (Gio) de données traitées dans toutes les régions.

Les tableaux suivants récapitulent les tarifs de diffusion d'index dans chaque région où le moteur correspondant est disponible.

Amériques

Type de machine — Région — Prix par nœud-heure
n1-standard-16
us-central1 1,0640 $
us-east1 1,0640 $
us-east4 1,1984 $
us-west1 1,0640 $
n1-standard-32
us-central1 2,1280 $
us-east1 2,1280 $
us-east4 2,3968 $
us-west1 2,1280 $

Europe

Type de machine — Région — Prix par nœud-heure
n1-standard-16
europe-west1 1,1715 $
n1-standard-32
europe-west1 2,3430 $

Asie-Pacifique

Type de machine — Région — Prix par nœud-heure
n1-standard-16
asia-southeast1 1,3126 $
n1-standard-32
asia-southeast1 2,6252 $

Exemples de tarifs d'un moteur de correspondance

Les tarifs de Vertex AI Matching Engine sont déterminés par la taille de vos données, le nombre de requêtes par seconde (RPS) que vous souhaitez exécuter et le nombre de nœuds que vous utilisez. Pour obtenir votre coût de diffusion estimé, vous devez calculer la taille totale de vos données. La taille de vos données correspond au nombre de représentations vectorielles continues/vecteurs* de dimensions dont vous disposez* de quatre octets par dimension. Une fois que vous avez la taille de vos données, vous pouvez calculer le coût de diffusion et le coût de la construction. Le coût de diffusion et le coût de construction correspondent à votre coût total mensuel.

  • Coût de diffusion: # instances dupliquées/segmentées * nombre de segments (~taille des données/20 Go) * 1,064 $/h * 24 heures/jour * 30 jours/mois
  • Coût de la création: taille des données(en Go) * 3 Go/Go * nombre de mises à jour/mois

Le coût de construction d'un index mensuel correspond à la taille des données * 3,00 par gigaoctet. La fréquence de mise à jour n'affecte pas le coût de diffusion, mais uniquement le coût des bâtiments.

Nombre de représentations vectorielles continues/vecteurs Nombre de dimensions Requêtes par seconde (RPS) Fréquence de mise à jour Coût mensuel de construction de l'index estimé Nœuds Coût de diffusion mensuel estimé
20 millions 128 1 000 Mensuelle $30 1 766 $
100 millions 256 3 000 Hebdomadaire 1 200 € 15 11 491 $
500 millions 128 20 000 Hebdomadaire 3 000 $ 260 199 160 $
1 milliard 512 5 000 Mensuelle 6 000 USD 500 383 000 €

Tous les exemples sont basés sur n1-standard-16 dans us-central1. Les coûts dépendent de vos besoins en termes de taux de rappel et de latence. L'estimation du coût de diffusion mensuel est directement liée au nombre de nœuds utilisés dans la console. Pour en savoir plus sur les paramètres de configuration affectant le coût, consultez la section Paramètres de configuration qui affectent le rappel et la latence.

Si vous avez des requêtes par seconde (RPS) élevées, le traitement par lot peut réduire les coûts totaux jusqu'à 30 % à 40%.

Vertex AI Model Monitoring

Vertex AI vous permet de surveiller l'efficacité continue de votre modèle après son déploiement en production. Pour plus d'informations, consultez la page Présentation de Vertex AI Model Monitoring.

Lorsque vous utilisez Vertex AI Model Monitoring, vous êtes facturé pour les éléments suivants :

  • 3,50 $ par Go pour toutes les données analysées, y compris les données d'entraînement fournies et les données de prédiction enregistrées dans une table BigQuery.
  • Frais pour les autres produits Google Cloud que vous utilisez avec Model Monitoring, tels que le stockage BigQuery ou Batch Explain lorsque la surveillance de l'attribution est activée.

Vertex AI Model Monitoring est compatible avec les régions suivantes : us-central1, europe-west4, asia-east1 et asia-southeast1. Les prix sont les mêmes dans toutes les régions.

Les tailles des données sont mesurées après leur conversion au format TfRecord.

Les ensembles de données d'entraînement entraînent des frais uniques lorsque vous configurez une tâche Vertex AI Model Monitoring.

Les ensembles de données de prédiction sont constitués de journaux collectés à partir du service de prédiction en ligne. Au fur et à mesure que les requêtes de prédiction arrivent au cours de différentes fenêtres temporelles, les données pour chaque fenêtre temporelle sont collectées et la somme des données analysée pour chaque fenêtre de prédiction est utilisée pour calculer les frais.

Exemple : un data scientist exécute une surveillance de modèle sur le trafic de prédiction appartenant à son modèle.

  • Le modèle est entraîné à partir d'un ensemble de données BigQuery. La taille des données après la conversion au format TfRecord est de 1,5 Go.
  • Les données de prédiction enregistrées entre 13h00 et 14h00 représentent 0,1 Go, et 0,2 Go entre 15h00 et 16h00.
  • Le prix total pour la configuration de la tâche de surveillance du modèle se présente comme suit :

    (1.5 GB * $3.50) + ((0.1 GB + 0.2 GB) * $3.50) = $6.30

Vertex AI Workbench

La tarification se compose de ressources de calcul et de stockage que vous utilisez, de frais de gestion pour vos instances Vertex AI Workbench et de toute autre ressource Google Cloud que vous utilisez. Pour en savoir plus, consultez les sections suivantes.

Ressources de calcul et de stockage

Les ressources de calcul et de stockage sont facturées au même tarif que vous utilisez actuellement pour Compute Engine et Cloud Storage.

Frais de gestion

Des frais de gestion Vertex AI Workbench s'ajoutent à votre utilisation de l'infrastructure, indiqués dans les tableaux ci-dessous.

Sélectionnez les notebooks gérés ou les notebooks gérés par l'utilisateur pour afficher leurs tarifs.

Notebooks gérés

SKU Frais de gestion par heure
vCPU 0,05 $ par processeur virtuel
T4, K80 et P4 (GPU standard) 0,35 $ par GPU
GPU P100, V100 et A100 (GPU premium) 2,48 $ par GPU

Notebooks gérés par l'utilisateur

SKU Frais de gestion par heure
vCPU 0,005 $ par processeur virtuel
T4, K80 et P4 (GPU standard) 0,035 $ par GPU
GPU P100, V100 et A100 (GPU premium) 0,25 $ par GPU

Ressources Google Cloud supplémentaires

En plus des coûts mentionnés précédemment, vous payez également les ressources Google Cloud que vous utilisez. Exemple :

  • Services d'analyse de données : des frais BigQuery vous sont facturés lors de l'envoi de requêtes SQL dans un notebook (consultez la page Tarifs de BigQuery).

  • Clés de chiffrement gérées par le client : l'utilisation de ces clés engendre des frais. Chaque fois que votre instance de notebooks gérés ou de notebooks gérés par l'utilisateur utilise une clé Cloud Key Management Service, cette opération est facturée selon les tarifs des opérations de clé Cloud KMS (consultez les tarifs de Cloud Key Management Service).

Conteneurs de deep learning, deep learning et AI Platform Pipelines

Pour les conteneurs de deep learning, les images de VM Deep Learning et les pipelines AI Platform, les tarifs sont calculés en fonction des ressources de calcul et de stockage que vous utilisez. Ces ressources sont facturées au même tarif que celui que vous payez actuellement pour Compute Engine et Cloud Storage.

En plus des frais de calcul et de stockage, vous payez également les ressources Google Cloud que vous utilisez. Exemple :

  • Services d'analyse de données : des frais BigQuery vous sont facturés lors de l'envoi de requêtes SQL dans un notebook (consultez la page Tarifs de BigQuery).

  • Clés de chiffrement gérées par le client : l'utilisation de ces clés engendre des frais. Chaque fois que votre instance de notebooks gérés ou de notebooks gérés par l'utilisateur utilise une clé Cloud Key Management Service, cette opération est facturée selon les tarifs des opérations de clé Cloud KMS (consultez les tarifs de Cloud Key Management Service).

Ajout d'étiquettes aux données

Vertex AI vous permet de demander l'ajout manuel d'étiquettes sur une collection de données que vous prévoyez d'utiliser pour entraîner un modèle de machine learning personnalisé. Les prix applicables à ce service sont calculés en fonction de la tâche d'étiquetage.

  • Pour les tâches d'étiquetage standards, les prix sont déterminés par le nombre d'unités d'annotation.
    • Pour une tâche de classification d'image, les unités sont déterminées par le nombre d'images et le nombre d'étiqueteurs manuels. Par exemple, une image avec trois étiqueteurs manuels compte pour 1 x 3 = 3 unités. Le prix est le même pour une classification à étiquette unique et une classification multi-étiquette.
    • Pour une tâche de cadre de délimitation d'image, les unités sont déterminées par le nombre de cadres de délimitation identifiés dans les images et le nombre d'étiqueteurs manuels. Par exemple, une image avec deux cadres de délimitation et trois étiqueteurs humains compte pour 2 * 3 = 6 unités. Les images sans cadre de délimitation ne sont pas facturées.
    • Pour une tâche de segmentation/cadre en rotation/polyligne/polygone d'image, les unités sont déterminées de la même manière qu'une tâche de cadre de délimitation d'image.
    • Pour une tâche de classification de vidéo, les unités sont déterminées par la durée de la vidéo (une unité tarifaire correspond à environ cinq secondes) et le nombre d'étiqueteurs manuels. Par exemple, une vidéo de 25 secondes avec 3 étiqueteurs manuels compte pour 25 / 5 x 3 = 15 unités. Le prix est le même pour une classification à étiquette unique et une classification multi-étiquette.
    • Pour une tâche de suivi d'objet vidéo, les unités sont déterminées par le nombre d'objets identifiés dans la vidéo et par le nombre d'étiqueteurs manuels. Par exemple, une vidéo comportant deux objets et trois étiqueteurs manuels compte pour 2 x 3 = 6 unités. Une vidéo sans objet n'est pas facturée.
    • Pour une tâche de reconnaissance d'actions dans des vidéos, les unités sont déterminées de la même manière qu'une tâche de suivi d'objet vidéo.
    • Pour une tâche de classification de texte, les unités sont déterminées par la longueur du texte (une unité tarifaire correspond à environ 50 mots) et le nombre d'étiqueteurs manuels. Par exemple, un texte avec 100 mots et 3 étiqueteurs manuels compte pour 100 / 50 x 3 = 6 unités. Le prix est le même pour une classification à étiquette unique et une classification multi-étiquette.
    • Pour une tâche d'analyse de sentiment d'un texte, les unités sont déterminées de la même manière qu'une tâche de classification de texte.
    • Pour une tâche d'extraction d'entité de texte, les unités sont déterminées par la longueur du texte (une unité tarifaire correspond à environ 50 mots), le nombre d'entités identifiées et le nombre d'étiqueteurs manuels. Par exemple, un texte contenant 100 mots, 2 entités identifiées et 3 étiqueteurs manuels compte pour 100 / 50 x 2 x 3 = 12 unités. Les textes sans entité ne sont pas facturés.
  • Pour les tâches d'analyse de sentiment d'un texte et de classification d'images, de vidéos et de texte, les étiqueteurs humains peuvent perdre la trace des classes si la taille de l'ensemble d'étiquettes est trop importante. Par conséquent, nous envoyons au maximum 20 classes à la fois aux étiqueteurs manuels. Par exemple, si la taille de l'ensemble d'étiquettes d'une tâche d'étiquetage est de 40, chaque élément de données est envoyé 40 / 20 = 2 fois pour examen manuel, et nous vous facturons deux fois le prix ( calculé ci-dessus).

  • Pour une tâche d'étiquetage qui active la fonctionnalité d'étiqueteur personnalisé, chaque élément de données est comptabilisé comme une unité d'étiqueteur personnalisé.

  • Pour une tâche d'ajout d'étiquettes d'apprentissage actif pour les éléments de données comportant des annotations générées par des modèles (sans l'aide d'un étiqueteur manuel), chaque élément de données est comptabilisé comme une unité d'apprentissage actif.

  • Pour une tâche d'ajout d'étiquettes d'apprentissage actif pour les éléments de données comportant des annotations générées par des étiqueteurs manuels, chaque élément de données est comptabilisé comme une tâche d'ajout d'étiquettes standard, comme décrit ci-dessus.

Le tableau ci-dessous présente les tarifs pour 1 000 unités par étiqueteur manuel, en fonction de l'unité indiquée pour chaque objectif. La tarification de niveau 1 s'applique aux 50 000 premières unités comptabilisées par mois pour chaque projet Google Cloud. La tarification de niveau 2 s'applique aux 950 000 unités suivantes comptabilisées par mois pour le projet (dans la limite de 1 000 000 d'unités). Contactez-nous pour connaître les tarifs au-delà de 1 000 000 d'unités par mois.

Type de données Objectif Unité Niveau 1 Niveau 2
Image Classification Image 35 $ 25 $
Cadre de délimitation Cadre de délimitation 63 $ 49 $
Segmentation Segment 870 $ 850 $
Cadre en rotation Cadre de délimitation 86 $ 60 $
Polygone/Polyligne Polygone/Polyligne 257 $ 180 $
Vidéo Classification Vidéo de 5 secondes 86 $ 60 $
Suivi des objets Cadre de délimitation 86 $ 60 $
Reconnaissance des actions Événement d'une vidéo de 30 secondes 214 $ 150 $
Texte Classification 50 mots 129 $ 90 $
Sentiment 50 mots 200 $ 140 $
Extraction d'entités Entité 86 $ 60 $
Apprentissage actif All Élément de données 80 $ 56 $
Étiqueteur personnalisé All Élément de données 80 $ 56 $

Utilisation obligatoire de Cloud Storage

En plus des coûts décrits dans ce document, vous devez stocker vos données et vos fichiers de programme dans des buckets Cloud Storage pendant le cycle de vie de Vertex AI. Ce stockage est soumis aux règles de tarification de Cloud Storage.

L'utilisation obligatoire de Cloud Storage comprend ce qui suit :

  • Préproduction de votre package d'application d'entraînement pour des modèles entraînés personnalisés

  • Stockage des données d'entrée d'entraînement

  • Stockage des résultats de vos tâches d'entraînement Vertex AI ne nécessite pas le stockage à long terme de ces éléments. vous pouvez supprimer les fichiers dès que l'opération est terminée)

Opérations gratuites pour la gestion de vos ressources

Les opérations de gestion des ressources proposées par AI Platform sont disponibles gratuitement. Les règles relatives aux quotas d'AI Platform limitent certaines de ces opérations.

Ressource Opérations gratuites
modèles create, get, list et delete
versions create, get, list, delete et setDefault
tâches get, list et cancel
opérations get, list, cancel et delete

Frais liés à Google Cloud

Si vous stockez des images à analyser dans Cloud Storage ou si vous utilisez d'autres ressources Google Cloud avec Vertex AI, l'utilisation de ces services vous sera également facturée.

Pour afficher l'état actuel de la facturation dans Google Cloud Console, y compris l'utilisation et votre facture actuelle, consultez la page Facturation. Pour en savoir plus sur la gestion de votre compte, consultez la documentation Cloud Billing ou contactez l'assistance pour la facturation et les paiements.

Étapes suivantes