Precios de Vertex AI

Los precios aparecen en dólares estadounidenses (USD). Si pagas en una moneda distinta del dólar estadounidense, se aplican los precios que aparecen en tu moneda en los SKU de Cloud Platform.

Precios de Vertex AI en comparación con los precios de AI Platform heredada

Los costos de Vertex AI siguen siendo los mismos que los de los productos existentes que Vertex AI sustituye. Por ejemplo, el costo de entrenar un modelo de clasificación de imágenes de AutoML es el mismo, sin importar si lo entrenas con Vertex AI o con AutoML Vision.

Si usas productos de AI Platform heredados, tu facturación podría expresarse en términos de unidades de AA.

Precios de los modelos de AutoML

En el caso de los modelos de AutoML de Vertex AI, pagas por tres actividades principales:

  • Entrena el modelo
  • Implementar el modelo en un extremo
  • Usar el modelo para hacer predicciones

Vertex AI usa parámetros de configuración predefinidos de máquinas para los modelos de Vertex AutoML y la tarifa por hora de estas actividades refleja el uso del recurso.

El tiempo necesario para entrenar tu modelo depende del tamaño y la complejidad de tus datos de entrenamiento. Se deben implementar los modelos antes de que puedan proporcionar predicciones o explicaciones en línea.

Pagas por cada modelo implementado en un extremo, incluso si no se hace ninguna predicción. Debes anular la implementación de tu modelo para evitar que se sigan generando cargos. No se cobran los modelos que no se implementaron o que fallaron.

Pagas solo por las horas de procesamiento que uses; si el entrenamiento falla por un motivo que no sea la cancelación por parte del usuario, no se te facturará por ese tiempo. Se te cobrará por el tiempo de entrenamiento si cancelas la operación.

Selecciona un tipo de modelo a continuación para obtener información sobre los precios.

Datos de imágenes

Operación Precio por hora de procesamiento de nodo (clasificación) Precio por hora de procesamiento de nodo (detección de objetos)
Capacitación $3.465 $3.465
Entrenamiento (modelo perimetral en dispositivo) $18.00 $18.00
Implementación y predicción en línea $1.375 $2.002
Predicción por lotes $2.222 $2.222

Datos de video

Operación Precio por hora de procesamiento de nodo (clasificación, seguimiento de objetos) Precio por hora de procesamiento de nodo (reconocimiento de acciones)
Entrenamiento $3.234 $3.300
Entrenamiento (modelo perimetral en dispositivo) $10.78 $11.00
Predictions $0.462 $0.550

Datos tabulares

Operación Precio por hora de procesamiento de nodo para clasificación/regresión Precio de previsión
Capacitación $21.252 Consulta Vertex AI Forecast.
Predicción El mismo precio que las predicciones para modelos entrenados de forma personalizada Consulta Vertex AI Forecast.

Datos de texto

Operación Precio
Carga de datos heredados (solo PDF)

Primeras 1,000 páginas gratis cada mes

$1.50 cada 1,000 páginas

$0.60 por 1,000 páginas por encima de 5,000,000

Entrenamiento $3.30 por hora
Deployment $0.05 por hora
Predicción

$5.00 por 1,000 registros de texto

$25.00 por 1,000 páginas de documento, como archivos PDF (solo heredado)

Los precios de las solicitudes de predicción de texto de Vertex AutoML se calculan según la cantidad de registros de texto que envías para el análisis. Un registro de texto es texto sin formato de hasta 1,000 caracteres Unicode (incluidos los espacios en blanco y las etiquetas de marcado, como HTML o XML).

Si el texto proporcionado en una solicitud de predicción contiene más de 1,000 caracteres, se cuenta un registro de texto por cada 1,000 caracteres. Por ejemplo, si envías tres solicitudes que contienen 800, 1,500 y 600 caracteres respectivamente, se te cobrará por cuatro registros de texto: uno por la primera solicitud (800) dos por la segunda solicitud (1,500) y uno por la tercera solicitud (600).

Cargos de predicción para Vertex Explainable AI

El procesamiento asociado con Vertex Explainable AI se cobra a la misma tarifa que la predicción. Sin embargo, el procesamiento de las explicaciones demora más que el de las predicciones normales. Por lo tanto, el uso intensivo de las Vertex Explainable IA junto con el ajuste de escala automático podrían traer como resultado el inicio de más nodos, lo que podría aumentar los cargos de predicción.

Previsión de Vertex AI

AutoML

Etapa Precios
Predicción $0.2 por 1,000 puntos de datos* (de 0 a 1,000,000)
$0.1 por 1,000 datos* (de 1,000 a 50 millones de puntos)
$0.02 por 1,000 datos* (&gt:50 millones de puntos)
Capacitación $21.25 por hora en todas las regiones
Explainable AI Explicabilidad con valores de Shapley. Consulta la página de precios de Vertex AI Prediction y Explicación.

* Un dato de predicción es un momento en el horizonte de previsión. Por ejemplo, con un nivel de detalle diario, un horizonte de 7 días equivale a 7 puntos por cada serie temporal.

  • Se pueden incluir hasta 5 cuantiles de predicción sin costo adicional.
  • La cantidad de datos consumidos por nivel se actualiza mensualmente.

ARIMA+

Etapa Precios
Predicción $5.00 por TB
Capacitación $250.00 por TB x cantidad de modelos candidatos x cantidad de ventanas de retroprueba*
Explainable AI La explicabilidad con una descomposición de series temporales no agrega ningún costo adicional. No se admite la explicabilidad con los valores de Shapley.

Consulta la página de precios de BigQuery ML para obtener más detalles. Cada trabajo de entrenamiento y predicción genera el costo de 1 ejecución de canalización administrada, como se describe en Precios de Vertex AI.

* Se crea una ventana de contraprueba para cada período del conjunto de prueba. El valor AUTO_ARIMA_MAX_ORDER utilizado determina la cantidad de modelos candidatos. Va de 6 a 42 para los modelos con varias series temporales.

Modelos entrenados de forma personalizada

Entrenamiento

En las siguientes tablas, se indica el precio por hora aproximado de varias configuraciones de entrenamiento. Puedes elegir una configuración personalizada de los tipos de máquinas seleccionados. Para calcular los precios, suma los costos de las máquinas virtuales que usas.

Si usas los tipos de máquinas de Compute Engine y les conectas aceleradores, el costo se cobra por separado. Para calcularlo, multiplica los precios de la tabla de aceleradores a continuación por la cantidad de horas de máquina de cada tipo de acelerador que uses.

Tipos de máquina

América

Europa

Asia-Pacífico

Si pagas en una moneda distinta del dólar estadounidense, se aplican los precios que aparecen en tu moneda en los SKU de Cloud Platform.

Aceleradores

América

Europa

Asia-Pacífico

Si pagas en una moneda distinta del dólar estadounidense, se aplican los precios que aparecen en tu moneda en los SKU de Cloud Platform.

* El precio del entrenamiento con un Pod de Cloud TPU se basa en la cantidad de núcleos del Pod. La cantidad de núcleos de un Pod siempre es un múltiplo de 32. Para determinar el precio del entrenamiento en un Pod que tiene más de 32 núcleos, toma el precio de un Pod de 32 núcleos y multiplícalo por la cantidad de núcleos, dividido por 32. Por ejemplo, en un Pod de 128 núcleos, el precio es (32-core Pod price) * (128/32). Si deseas obtener información sobre qué pods de Cloud TPU están disponibles para una región específica, consulta Arquitectura del sistema en la documentación de Cloud TPU.

Discos

América

Europa

Asia-Pacífico

Si pagas en una moneda distinta del dólar estadounidense, se aplican los precios que aparecen en tu moneda en los SKU de Cloud Platform.

Se cobra el entrenamiento de tus modelos desde el momento en que los recursos se aprovisionan para un trabajo hasta que el trabajo finaliza.

Niveles de escala para configuraciones predefinidas (AI Platform Training)

Puedes controlar el tipo de clúster de procesamiento que se utilizará para entrenar un modelo. La forma más sencilla es seleccionar una de las configuraciones predeterminadas, denominadas niveles de escala. Obtén más información acerca de los niveles de escala.

Tipos de máquinas para las configuraciones personalizadas

Si usas Vertex AI o seleccionas CUSTOM como el nivel de escala para AI Platform Training, puedes controlar la cantidad y el tipo de las máquinas virtuales que se usarán para la instancia principal, el trabajador y los servidores de parámetro del clúster. Obtén más información sobre los tipos de máquinas para Vertex AI y los tipos de máquinas para AI Platform Training.

El costo del entrenamiento con un clúster de procesamiento personalizado es la suma de todas las máquinas que especifiques. Se cobra el tiempo total del trabajo, no el tiempo de procesamiento activo de las máquinas individuales.

Calcular el costo del entrenamiento con unidades de AA consumidas

Las unidades de AA consumidas (unidades de aprendizaje automático consumidas) que se muestran en la página Detalles del trabajo equivalen a las unidades de entrenamiento con la duración del trabajo incluida. Cuando uses las unidades de AA consumidas en los cálculos, usa la siguiente fórmula:

(Consumed ML units) * (Machine type cost)

Ejemplo:

  • Un científico de datos ejecuta un trabajo de entrenamiento en una instancia de máquina e2-standard-4 en la región us-west1 (Oregón). El campo Unidades de AA consumidas de la página Detalles del trabajo muestra 55.75. El cálculo es el siguiente:

    55.75 consumed ML units * 0.154114

    Con un total de USD 8.59 por el trabajo.

Para acceder a la página Detalles del trabajo, ve a Lista de trabajos y haz clic en el vínculo de un trabajo específico.

Predicción y explicación

En esta tabla, se proporciona los precios de la predicción por lotes, la predicción en línea y la explicación en línea por hora de nodo. Una hora de procesamiento de nodo representa el tiempo que una máquina virtual dedica a la ejecución del trabajo de predicción o se mantiene preparada para administrar solicitudes de predicción o explicación.

América

Predicción
Predicciones y explicaciones
Tipos de máquinas: precio por hora de procesamiento de nodo
n1-standard-2 Aproximaciones:
us-east4 $0.123
northamerica-northeast1 $0.1203
Otras regiones de América $0.1093
n1-standard-4 Aproximaciones:
us-east4 $0.2461
northamerica-northeast1 $0.2405
Otras regiones de América $0.2186
n1-standard-8 Aproximaciones:
us-east4 $0.4922
northamerica-northeast1 $0.4811
Otras regiones de América $0.4372
n1-standard-16 Aproximaciones:
us-east4 $0.9843
northamerica-northeast1 $0.9622
Otras regiones de América $0.8744
n1-standard-32 Aproximaciones:
us-east4 $1.9687
northamerica-northeast1 $1.9243
Otras regiones de América $1.7488
n1-highmem-2 Aproximaciones:
us-east4 $0.1532
northamerica-northeast1 $0.1498
Otras regiones de América $0.1361
n1-highmem-4 Aproximaciones:
us-east4 $0.3064
northamerica-northeast1 $0.2995
Otras regiones de América $0.2723
n1-highmem-8 Aproximaciones:
us-east4 $0.6129
northamerica-northeast1 $0.5991
Otras regiones de América $0.5445
n1-highmem-16 Aproximaciones:
us-east4 $1.2257
northamerica-northeast1 $1.1982
Otras regiones de América $1.089
n1-highmem-32 Aproximaciones:
us-east4 $2.4515
northamerica-northeast1 $2.3963
Otras regiones de América $2.178
n1-highcpu-2 Aproximaciones:
us-east4 $0.0918
northamerica-northeast1 $0.0897
Otras regiones de América $0.0815
n1-highcpu-4 Aproximaciones:
us-east4 $0.1835
northamerica-northeast1 $0.1794
Otras regiones de América $0.163
n1-highcpu-8 Aproximaciones:
us-east4 $0.3671
northamerica-northeast1 $0.3588
Otras regiones de América $0.326
n1-highcpu-16 Aproximaciones:
us-east4 $0.7341
northamerica-northeast1 $0.7176
Otras regiones de América $0.6519
n1-highcpu-32 Aproximaciones:
us-east4 $1.4683
northamerica-northeast1 $1.4352
Otras regiones de América $1.3039

Europa

Predicción
Predicciones y explicaciones
Tipos de máquinas: precio por hora de procesamiento de nodo
n1-standard-2 Aproximaciones:
europe-west2 $0.1408
Otras regiones de Europa $0.1265
n1-standard-4 Aproximaciones:
europe-west2 $0.2815
Otras regiones de Europa $0.2531
n1-standard-8 Aproximaciones:
europe-west2 $0.563
Otras regiones de Europa $0.5061
n1-standard-16 Aproximaciones:
europe-west2 $1.126
Otras regiones de Europa $1.0123
n1-standard-32 Aproximaciones:
europe-west2 $2.2521
Otras regiones de Europa $2.0245
n1-highmem-2 Aproximaciones:
europe-west2 $0.1753
Otras regiones de Europa $0.1575
n1-highmem-4 Aproximaciones:
europe-west2 $0.3506
Otras regiones de Europa $0.3151
n1-highmem-8 Aproximaciones:
europe-west2 $0.7011
Otras regiones de Europa $0.6302
n1-highmem-16 Aproximaciones:
europe-west2 $1.4022
Otras regiones de Europa $1.2603
n1-highmem-32 Aproximaciones:
europe-west2 $2.8044
Otras regiones de Europa $2.5206
n1-highcpu-2 Aproximaciones:
europe-west2 $0.105
Otras regiones de Europa $0.0944
n1-highcpu-4 Aproximaciones:
europe-west2 $0.21
Otras regiones de Europa $0.1888
n1-highcpu-8 Aproximaciones:
europe-west2 $0.4199
Otras regiones de Europa $0.3776
n1-highcpu-16 Aproximaciones:
europe-west2 $0.8398
Otras regiones de Europa $0.7552
n1-highcpu-32 Aproximaciones:
europe-west2 $1.6796
Otras regiones de Europa $1.5104

Asia-Pacífico

Predicción
Predicciones y explicaciones
Tipos de máquinas: precio por hora de procesamiento de nodo
n1-standard-2 Aproximaciones:
asia-northeast1 $0.1402
asia-southeast1 $0.1348
australia-southeast1 $0.155
Otras regiones de Asia-Pacífico $0.1265
n1-standard-4 Aproximaciones:
asia-northeast1 $0.2803
asia-southeast1 $0.2695
australia-southeast1 $0.31
Otras regiones de Asia-Pacífico $0.2531
n1-standard-8 Aproximaciones:
asia-northeast1 $0.5606
asia-southeast1 $0.5391
australia-southeast1 $0.6201
Otras regiones de Asia-Pacífico $0.5061
n1-standard-16 Aproximaciones:
asia-northeast1 $1.1213
asia-southeast1 $1.0782
australia-southeast1 $1.2401
Otras regiones de Asia-Pacífico $1.0123
n1-standard-32 Aproximaciones:
asia-northeast1 $2.2426
asia-southeast1 $2.1564
australia-southeast1 $2.4802
Otras regiones de Asia-Pacífico $2.0245
n1-highmem-2 Aproximaciones:
asia-northeast1 $0.1744
asia-southeast1 $0.1678
australia-southeast1 $0.193
Otras regiones de Asia-Pacífico $0.1575
n1-highmem-4 Aproximaciones:
asia-northeast1 $0.3489
asia-southeast1 $0.3357
australia-southeast1 $0.3861
Otras regiones de Asia-Pacífico $0.3151
n1-highmem-8 Aproximaciones:
asia-northeast1 $0.6977
asia-southeast1 $0.6713
australia-southeast1 $0.7721
Otras regiones de Asia-Pacífico $0.6302
n1-highmem-16 Aproximaciones:
asia-northeast1 $1.3955
asia-southeast1 $1.3426
australia-southeast1 $1.5443
Otras regiones de Asia-Pacífico $1.2603
n1-highmem-32 Aproximaciones:
asia-northeast1 $2.791
asia-southeast1 $2.6852
australia-southeast1 $3.0885
Otras regiones de Asia-Pacífico $2.5206
n1-highcpu-2 Aproximaciones:
asia-northeast1 $0.1046
asia-southeast1 $0.1005
australia-southeast1 $0.1156
Otras regiones de Asia-Pacífico $0.0944
n1-highcpu-4 Aproximaciones:
asia-northeast1 $0.2093
asia-southeast1 $0.201
australia-southeast1 $0.2312
Otras regiones de Asia-Pacífico $0.1888
n1-highcpu-8 Aproximaciones:
asia-northeast1 $0.4186
asia-southeast1 $0.4021
australia-southeast1 $0.4624
Otras regiones de Asia-Pacífico $0.3776
n1-highcpu-16 Aproximaciones:
asia-northeast1 $0.8371
asia-southeast1 $0.8041
australia-southeast1 $0.9249
Otras regiones de Asia-Pacífico $0.7552
n1-highcpu-32 Aproximaciones:
asia-northeast1 $1.6742
asia-southeast1 $1.6082
australia-southeast1 $1.8498
Otras regiones de Asia-Pacífico $1.5104

Cada tipo de máquina se cobra como dos SKU separados en tu factura de Google Cloud:

  • Costo de CPU virtual, medido en horas de CPU virtual
  • Costo de RAM, medido en GB-hora

Los precios de los tipos de máquinas de la tabla anterior se aproximan al costo total por hora para cada nodo de predicción de una versión del modelo que usa ese tipo de máquina. Por ejemplo, dado que un tipo de máquina n1-highcpu-32 incluye 32 CPU virtuales y 28.8 GB de RAM, el precio por hora de procesamiento de nodo es igual a 32 horas de CPU virtual + 28.8 GB-hora.

Los precios de la tabla anterior se proporcionan para ayudarte a estimar los costos de las predicciones en línea. En la siguiente tabla, se muestran los precios de CPU virtual y RAM para los tipos de máquinas de predicción, que reflejan con mayor precisión los SKU por los que se te cobrará:

América

SKU de tipo de máquina de predicción
CPU virtual
N. Virginia (us-east4) $0.04094575 por hora de CPU virtual
Montreal (northamerica-northeast1) $0.0400223 por hora de CPU virtual
Otras regiones de América $0.03635495 por hora de CPU virtual
RAM
N. Virginia (us-east4) $0.00548665 por GB-hora
Montreal (northamerica-northeast1) $0.0053636 por GB-hora
Otras regiones de América $0.0048783 por GB-hora

Europa

SKU de tipo de máquina de predicción
CPU virtual
Londres (europe-west2) $0.0468395 por hora de CPU virtual
Otras regiones de Europa $0.0421268 por hora de CPU virtual
RAM
Londres (europe-west2) $0.0062767 por GB-hora
Otras regiones de Europa $0.0056373 por GB-hora

Asia-Pacífico

SKU de tipo de máquina de predicción
CPU virtual
Tokio (asia-northeast1) $0.0467107 por hora de CPU virtual
Singapur (asia-southeast1) $0.04484885 por hora de CPU virtual
Sídney (australia-southeast1) $0.0515844 por hora de CPU virtual
Otras regiones de Asia-Pacífico $0.0421268 por hora de CPU virtual
RAM
Tokio (asia-northeast1) $0.00623185 por GB-hora
Singapur (asia-southeast1) $0.0060099 por GB-hora
Sídney (australia-southeast1) $0.00691265 por GB-hora
Otras regiones de Asia-Pacífico $0.0056373 por GB-hora

De forma opcional, puedes usar aceleradores de GPU para predicción. Las GPU incurren en un cargo adicional, separado de los descritos en la tabla anterior. En la siguiente tabla, se describen los precios para cada tipo de GPU:

América

Precio por hora de los aceleradores
NVIDIA_TESLA_K80
Iowa (us-central1) $0.5175
Carolina del Sur (us-east1) $0.5175
NVIDIA_TESLA_P4
Iowa (us-central1) $0.6900
N. Virginia (us-east4) $0.6900
Montreal (northamerica-northeast1) $0.7475
NVIDIA_TESLA_P100
Oregón (us-west1) $1.6790
Iowa (us-central1) $1.6790
Carolina del Sur (us-east1) $1.6790
NVIDIA_TESLA_T4
Oregón (us-west1) $0.4025
Iowa (us-central1) $0.4025
Carolina del Sur (us-east1) $0.4025
NVIDIA_TESLA_V100
Oregón (us-west1) $2.8520
Iowa (us-central1) $2.8520

Europa

Precio por hora de los aceleradores
NVIDIA_TESLA_K80
Bélgica (europe-west1) $0.5635
NVIDIA_TESLA_P4
Países Bajos (europe-west4) $0.7475
NVIDIA_TESLA_P100
Bélgica (europe-west1) $1.8400
NVIDIA_TESLA_T4
Londres (europe-west2) $0.4715
Países Bajos (europe-west4) $0.4370
NVIDIA_TESLA_V100
Países Bajos (europe-west4) $2.9325

Asia-Pacífico

Precio por hora de los aceleradores
NVIDIA_TESLA_K80
Taiwán (asia-east1) $0.5635
NVIDIA_TESLA_P4
Singapur (asia-southeast1) $0.7475
Sídney (australia-southeast1) $0.7475
NVIDIA_TESLA_P100
Taiwán (asia-east1) $1.8400
NVIDIA_TESLA_T4
Tokio (asia-northeast1) $0.4255
Singapur (asia-southeast1) $0.4255
Seúl (asia-northeast3) $0.4485
NVIDIA_TESLA_V100 No disponible

El precio es por GPU, por lo que si usas varias GPU por nodo de predicción (o si tu versión se ajusta para usar varios nodos), los costos se ajustan en consecuencia.

AI Platform Prediction te permite realizar predicciones de tu modelo mediante la ejecución de varias máquinas virtuales (“nodos”). De forma predeterminada, Vertex AI escala automáticamente la cantidad de nodos que se ejecutan a la vez. En el caso de la predicción en línea, se escala la cantidad de nodos para satisfacer la demanda. Cada nodo puede responder a varias solicitudes de predicción. En el caso de la predicción por lotes, se escala la cantidad de nodos a fin de reducir el tiempo total que se necesita para ejecutar un trabajo. Puedes personalizar la escala de los nodos de predicción.

Se cobra el tiempo que se ejecuta cada nodo en tu modelo, incluido lo siguiente:

  • Cuando el nodo procesa un trabajo de predicción por lotes.
  • Cuando el nodo procesa una solicitud de predicción en línea.
  • Cuando el nodo está listo para realizar predicciones en línea

El costo de ejecución de un nodo por una hora es una hora por nodo. En la tabla de precios de predicción, se describe el precio de una hora de procesamiento de nodo, que varía según la región y entre la predicción en línea y por lotes.

Puedes consumir horas de procesamiento de nodo en incrementos fraccionarios. Por ejemplo, la ejecución de un nodo por 30 minutos cuesta 0.5 horas de procesamiento de nodo.

Cálculos de costos para tipos de máquinas heredadas (MLS1) y predicción por lotes

  • El tiempo de ejecución de un nodo se mide en incrementos de un minuto, redondeado hacia arriba hasta el minuto más cercano. Por ejemplo, si se ejecuta un nodo por 20.1 minutos, debes calcular el costo como si fueran 21 minutos de ejecución.
  • El tiempo de ejecución de los nodos que se ejecutan por menos de 10 minutos se redondea a 10 minutos. Por ejemplo, si se ejecuta un nodo por solo 3 minutos, debes calcular el costo como si fueran 10 minutos de ejecución.

Cálculos de costos para los tipos de máquina de Compute Engine (N1)

  • El tiempo de ejecución de un nodo se factura en incrementos de 30 segundos. Esto significa que, cada 30 segundos, tu proyecto se factura por 30 segundos de los recursos de CPU virtual, RAM y GPU que utilice tu nodo en ese momento.

Más información sobre el ajuste de escala automático de los nodos de predicción

Predicción en línea Predicción por lotes
La prioridad del escalamiento es reducir la latencia de las solicitudes individuales. El servicio mantiene el modelo preparado durante unos minutos de inactividad después de inspeccionar una solicitud. La prioridad del escalamiento es reducir el tiempo transcurrido total del trabajo.
El escalamiento afecta los costos totales cada mes: cuanto más numerosas y frecuentes sean las solicitudes, más nodos se usarán. El escalamiento no debería afectar mucho el precio del trabajo, aunque se pueden generar costos si se agrega un nuevo nodo.

Puedes elegir dejar que el servicio escale como respuesta al tráfico (ajuste de escala automático) o puedes especificar una cantidad de nodos para que se ejecuten constantemente y evitar así la latencia (escalamiento manual).

  • Si eliges el ajuste de escala automático, la cantidad de nodos escala automáticamente. En las implementaciones de tipo de máquina heredadas (MLS1) de AI Platform Prediction, la cantidad de nodos puede reducirse a cero en períodos sin tráfico. Las implementaciones de Vertex AI y otros tipos de implementaciones de AI Platform Prediction no pueden reducir la escala a cero.
  • Si eliges el escalamiento manual, especificas una cantidad de nodos para que se sigan ejecutando todo el tiempo. Se cobra todo el tiempo en el que los nodos se ejecutan, a partir del momento de la implementación y hasta que borres la versión del modelo.
Puedes modificar el escalamiento mediante la configuración de una cantidad máxima de nodos que se usará en un trabajo de predicción por lotes y la configuración de la cantidad de nodos que deben seguir ejecutándose para un modelo cuando lo implementas.

Cargo mínimo de 10 minutos

Recuerda que, si se ejecuta un nodo por menos de 10 minutos, se cobrará como si fueran 10 minutos de ejecución. Por ejemplo, supón que usas el ajuste de escala automático. Durante un período sin tráfico, si usas un tipo de máquina heredado (MLS1) en AI Platform Prediction, no se usa ningún nodo. (Si usas otros tipos de máquinas en AI Platform Prediction o si usas Vertex AI, siempre hay al menos un nodo en uso). Si recibes una única solicitud de predicción en línea, un nodo se escala verticalmente para atender la solicitud. Después de ello, se sigue ejecutando el nodo por unos minutos en espera de alguna otra solicitud. Luego, se deja de ejecutar. Incluso si el nodo se ejecutó por menos de 10 minutos, el trabajo del nodo se cobra por 10 minutos (0.17 horas de procesamiento de nodo).

De forma alternativa, también se cobra por 10 minutos si se escala un único nodo para administrar muchas solicitudes de predicción en línea dentro de un período de 10 minutos antes de que se deje de ejecutar.

Puedes usar el escalamiento manual para controlar cuántos nodos se ejecutan en una cantidad de tiempo determinada. Sin embargo, si se ejecuta un nodo por menos de 10 minutos, se cobrará como si fueran 10 minutos de ejecución.

Obtén más información sobre el escalamiento y la asignación de nodos.

Los trabajos de predicción por lotes se cobran después de que se completa el trabajo.

Los trabajos de predicción por lotes se cobran después de que se completan los trabajos, no de manera incremental durante el trabajo. Las alertas de presupuesto de Facturación de Cloud que configuraste no se activan mientras se ejecuta un trabajo. Antes de comenzar un trabajo grande, considera ejecutar algunos trabajos comparativos de costos con datos de entrada pequeños.

Ejemplo de un cálculo de predicción

Una empresa inmobiliaria de una región de América ejecuta una predicción semanal del valor de las viviendas en las áreas en las que trabaja. En un mes, ejecuta predicciones para cuatro semanas en lotes de 3920, 4277, 3849 y 3961. Los trabajos se limitan a un nodo y cada instancia demora un promedio de procesamiento de 0.72 segundos.

Primero, calcula la cantidad de tiempo de ejecución de cada trabajo:

3920 instances * (0.72 seconds / 1 instance) * (1 minute / 60 seconds) = 47.04 minutes
4277 instances * (0.72 seconds / 1 instance) * (1 minute / 60 seconds) = 51.324 minutes
3849 instances * (0.72 seconds / 1 instance) * (1 minute / 60 seconds) = 46.188 minutes
3961 instances * (0.72 seconds / 1 instance) * (1 minute / 60 seconds) = 47.532 minutes

Si se ejecutó cada trabajo por más de diez minutos, se cobra por cada minuto de procesamiento:

($0.0909886 / 1 node hour) * (1 hour / 60 minutes) * 48 minutes * 1 node = $0.0632964
($0.0909886 / 1 node hour) * (1 hour / 60 minutes) * 52 minutes * 1 node = $0.0685711
($0.0909886 / 1 node hour) * (1 hour / 60 minutes) * 47 minutes * 1 node = $0.061977725
($0.0909886 / 1 node hour) * (1 hour / 60 minutes) * 48 minutes * 1 node = $0.0632964

El cargo total del mes es de $0.26.

En este ejemplo se supuso que se ejecutaron los trabajos en un único nodo y que requirieron una cantidad de tiempo coherente por cada instancia de entrada. En los cálculos de uso real, asegúrate de incluir instancias de varios nodos y usar el tiempo real de ejecución de cada nodo.

Cargos por Vertex Explainable AI

Vertex Explainable AI no tiene cargo adicional a los precios de predicción. Sin embargo, el procesamiento de las explicaciones demora más que el de las predicciones normales. Por lo tanto, el uso intensivo de las Vertex Explainable IA junto con el ajuste de escala automático podrían traer como resultado el inicio de más nodos, lo que podría aumentar los cargos de predicción.

Vertex AI Pipelines

Las canalizaciones de Vertex AI cobran una tarifa de ejecución de $0.03 por cada ejecución de canalización. No se te cobrará la tarifa de ejecución durante la versión preliminar. También pagas por los recursos de Google Cloud que usas con las canalizaciones de Vertex AI, como los recursos de Compute Engine que consumen los componentes de canalización (se cobran con la misma tarifa que la de entrenamiento de Vertex AI). Por último, eres responsable del costo de cualquier servicio (como Dataflow) que llame a tu canalización.

Vertex AI Feature Store

Los precios de Feature Store de Vertex AI se basan en la cantidad de datos de atributos en el almacenamiento en línea y sin conexión, así como en la disponibilidad de la entrega en línea. Una hora de procesamiento de nodo representa el tiempo que una máquina virtual dedica a entregar datos de atributos o el que tiempo que espera en un estado listo para manejar las solicitudes de datos de atributos.

Operación Precio
Almacenamiento en línea $0.25 por GB por mes
Almacenamiento sin conexión $0.023 por GB por mes
Entrega en línea $0.94 por nodo por hora
Exportación por lotes $0.005 por GB

Cuando habilita la supervisión de valores de funciones, la facturación incluye los cargos correspondientes antes que los siguientes cargos:

  • $3.50 por GB para todos los datos analizados. Si habilitas el análisis de instantáneas, se incluirán las instantáneas tomadas para los datos de Vertex AI Feature Store. Si habilitas el análisis de atributos de importación, se incluirán los lotes de datos transferidos.
  • Entre los cargos adicionales por otras operaciones de Vertex AI Feature Store que se utilizan con la supervisión del valor de funciones, se incluyen los siguientes:
    • La función de análisis de instantáneas toma periódicamente una instantánea de los valores de los atributos según su configuración para el intervalo de supervisión.
    • El cobro de una exportación de instantánea es el mismo que el de una operación normal de exportación por lotes.

Ejemplo de análisis de instantáneas

Un científico de datos habilita la supervisión del valor de las características de Vertex AI Feature Store y la activa para un análisis diario de instantáneas. Una canalización se ejecuta a diario para la supervisión de tipos de entidades. La canalización analiza 2 GB de datos en Vertex AI Feature Store y exporta una instantánea que contenga 0.1 GB de datos. El cargo total por análisis de un día es el siguiente:

(0.1 GB * $3.50) + (2 GB * $0.005) = $0.36

Ejemplo de análisis de transferencia

Un científico de datos habilita la supervisión de valores de atributos para su Vertex AI Feature Store y activa la supervisión de las operaciones de transferencia. Una operación de transferencia importa 1 GB de datos a Vertex AI Feature Store. El cargo total por supervisar el valor de los atributos es el siguiente:

(1 GB * $3.50) = $3.50

Vertex ML Metadata

El almacenamiento de metadatos se mide en gigabytes binarios (GiB), y 1 GiB equivale a 1,073,741,824 bytes. Esta unidad de medida también se conoce como gibibyte.

Vertex ML Metadata cobra $10 por gibibyte (GiB) al mes por almacenamiento de metadatos.

Vertex AI TensorBoard

Para usar Vertex AI TensorBoard, solicita que el administrador de IAM del proyecto te asigne la función "Vertex AI TensorBoard Web App User". La función de administrador de Vertex AI también tiene acceso.

Vertex AI TensorBoard cobra una tarifa mensual de $300 por usuario activo único. Los usuarios activos se miden a través de la IU de Vertex AI TensorBoard. También pagas por los recursos de Google Cloud que usas con Vertex AI TensorBoard, como los registros de TensorBoard almacenados en Cloud Storage.

Vertex AI Vizier

Vertex AI Vizier es un servicio de optimización de caja negra de Vertex AI. El modelo de precios Vertex AI Vizier consta de los siguientes elementos:

  • No se aplican cargos por las pruebas que usan RANDOM_SEARCH y GRID_SEARCH. Obtén más información sobre los algoritmos de búsqueda.
  • Las primeras 100 pruebas de Vertex AI Vizier al mes calendario están disponibles sin cargo (las pruebas que usan RANDOM_SEARCH y GRID_SEARCH no se toman en cuenta en este total).
  • Después de 100 pruebas de Vertex AI Vizier, las pruebas posteriores durante el mismo mes calendario se cobran a $1 por prueba (las que usan RANDOM_SEARCH o GRID_SEARCH no generan cargos).

Vertex AI Matching Engine

El precio del servicio vecino más cercano aproximado de Vertex AI Matching Engine incluye lo siguiente:

  • Precios por hora de procesamiento de nodo para cada VM que se usa a fin de alojar un índice implementado.
  • Un costo para compilar índices nuevos y actualizar los existentes.

Los datos procesados durante la compilación y actualización de índices se miden en gigabytes binarios (GiB), en los que 1 GiB equivale a 1,073,741,824 bytes. Esta unidad de medida también se conoce como gibibyte.

Vertex AI Matching Engine cobra $3.00 por gibibyte (GiB) de datos procesados en todas las regiones.

En las siguientes tablas, se resumen los precios de la entrega de índices en cada región donde hay disponible un motor de coincidencias.

América

Tipo de máquina, Región, Precio por hora de procesamiento de nodo
n1-standard-16
us-central1 $1.0640
us-east1 $1.0640
us-east4 $1.1984
us-west1 $1.0640
n1-standard-32
us-central1 $2.1280
us-east1 $2.1280
us-east4 $2.3968
us-west1 $2.1280

Europa

Tipo de máquina, Región, Precio por hora de procesamiento de nodo
n1-standard-16
europe-west1 $1.1715
n1-standard-32
europe-west1 $2.3430

Asia-Pacífico

Tipo de máquina, Región, Precio por hora de procesamiento de nodo
n1-standard-16
asia-southeast1 $1.3126
n1-standard-32
asia-southeast1 $2.6252

Ejemplos de precios de motores de búsqueda

Los precios de Vertex AI Matching Engine se determinan según el tamaño de los datos, la cantidad de consultas por segundo (QPS) que deseas ejecutar y la cantidad de nodos que usas. Para obtener tu costo de entrega estimado, debes calcular el tamaño total de los datos. El tamaño de tus datos es la cantidad de vectores o vectores* incorporados y la cantidad de dimensiones que tienes* 4 bytes por dimensión. Una vez que tienes el tamaño de tus datos, puedes calcular el costo de entrega y de costo de compilación. El costo de entrega más el costo de construcción es igual a tu costo total mensual.

  • Costo de entrega: # réplicas por fragmento * fragmentos (~tamaño de datos/20 GB) * $1.064/h * 24 h/día * 30 días al mes
  • Costo de construcción: tamaño de los datos(en GB) * USD 3 por GB * cantidad de actualizaciones por mes

El costo de compilación del índice mensual es el tamaño de los datos * 3.00 por gigabyte. La frecuencia de actualización no afecta el costo de entrega, solo el costo de compilación.

Cantidad de incorporaciones o vectores Cantidad de dimensiones Consultas por segundo (QPS) Frecuencia de actualización Costo mensual estimado de creación del índice Nodos Costo de publicación mensual estimado
20 millones 128 1,000 Mensual $30 1 USD 766
100 millones 256 3,000 Semanal USD 1,200 15 USD 11,491
500 millones 128 20,000 Semanal $3,000 260 USD 199,160
1,000 millones 512 5,000 Mensual $6,000 500 USD 383,000

Todos los ejemplos se basan en n1-standard-16 en us-central1. El costo que se genere variará con los requisitos de tasa de recuperación y latencia. El costo de entrega mensual estimado se relaciona directamente con la cantidad de nodos que se usan en la consola. Para obtener más información sobre los parámetros de configuración que afectan el costo, consulta Parámetros de configuración que afectan la recuperación y la latencia.

Si tienes consultas por segundo (QPS) altas, agrupar estas consultas puede reducir los costos totales hasta un 30% o un 40%.

Vertex AI Model Monitoring

Vertex AI te permite monitorear la eficacia continua de tu modelo después de implementarlo en producción. Para obtener más información, consulta Introducción a Vertex AI Model Monitoring.

Cuando utilizas Vertex AI Model Monitoring, se te factura lo siguiente:

  • $3,50 por GB para todos los datos analizados, incluidos los datos de entrenamiento proporcionados y los datos de predicción registrados en una tabla de BigQuery.
  • Cargos por otros productos de Google Cloud que usa con Model Monitoring, como el almacenamiento de BigQuery o Batch Explain cuando la supervisión de atribución esté habilitada.

Vertex AI Model Monitoring es compatible con las siguientes regiones: us-central1, europe-west4, asia-east1 y asia-southeast1. Los precios son los mismos en todas las regiones.

Los tamaños de los datos se miden después de que se convierten al formato TfRecord.

Los conjuntos de datos de entrenamiento incurren en un cargo único cuando configura un trabajo de Vertex AI Model Monitoring.

Los conjuntos de datos de predicción consisten en registros recopilados del servicio de predicción en línea. A medida que las solicitudes de predicción llegan durante diferentes períodos, se recopilan los datos para cada período y se usa la suma de los datos analizados para cada período de predicción a fin de calcular el cargo.

Ejemplo: un científico de datos ejecuta la supervisión de modelos en el tráfico de predicción que pertenece a su modelo.

  • El modelo se entrena a partir de un conjunto de datos de BigQuery. El tamaño de los datos después de convertir a TfRecord es 1.5 GB.
  • Los datos de predicción registrados entre la 1:00 p.m. y las 2:00 p.m. son 0.1 GB, entre las 3:00 p.m. y las 4:00 p.m. son 0.2 GB.
  • El precio total para configurar el trabajo de supervisión de modelos es el siguiente:

    (1.5 GB * $3.50) + ((0.1 GB + 0.2 GB) * $3.50) = $6.30

Vertex AI Workbench

Los precios se componen de los recursos de procesamiento y almacenamiento que uses, las tarifas de administración de las instancias de Vertex AI Workbench y cualquier recurso adicional de Google Cloud que uses. Consulta las siguientes secciones para obtener más detalles.

Recursos de procesamiento y almacenamiento

Los recursos de procesamiento y almacenamiento se cobran a la misma tarifa que pagas por Compute Engine y Cloud Storage.

Tarifas de administración

Además del uso de la infraestructura, se cobran tarifas por la administración de Vertex AI Workbench, que se registran en las tablas a continuación.

Selecciona notebooks administrados o notebooks administrados por el usuario para obtener información sobre los precios.

Notebooks administrados

SKU Tarifa de administración por hora
CPU virtual $0.05 por vCore
T4, K80 y P4 (GPU estándar) $0.35 por GPU
GPU P100, V100 y A100 (GPU premium) $2.48 por GPU

Notebooks administrados por el usuario

SKU Tarifa de administración por hora
CPU virtual $0.005 por vCore
T4, K80 y P4 (GPU estándar) $0.035 por GPU
GPU P100, V100 y A100 (GPU premium) $0.25 por GPU

Recursos adicionales de Google Cloud

Además de los costos mencionados anteriormente, también pagas por cualquier recurso de Google Cloud que uses. Por ejemplo:

  • Servicios de análisis de datos: Generas costos de BigQuery cuando envías consultas de SQL en un notebook (consulta Precios de BigQuery).

  • Claves de encriptación administradas por el cliente: Generas cargos cuando las usas. Cada vez que tus notebooks administrados o la instancia de notebooks administrados por el usuario usan una clave de Cloud Key Management Service, esa operación se factura según la tarifa de las operaciones de clave de Cloud KMS (consulta Precios de Cloud Key Management Service)

Contenedores de aprendizaje profundo, VM de aprendizaje profundo y canalizaciones de AI Platform

Para los contenedores de aprendizaje profundo, las imágenes de VM de aprendizaje profundo y AI Platform Pipelines, los precios se calculan según los recursos de procesamiento y almacenamiento que uses. Estos recursos se cobran a la misma tarifa que pagas actualmente por Compute Engine y Cloud Storage.

Además de los costos de procesamiento y almacenamiento, también pagas por cualquier recurso de Google Cloud que uses. Por ejemplo:

  • Servicios de análisis de datos: Generas costos de BigQuery cuando envías consultas de SQL en un notebook (consulta Precios de BigQuery).

  • Claves de encriptación administradas por el cliente: Generas cargos cuando las usas. Cada vez que tus notebooks administrados o la instancia de notebooks administrados por el usuario usan una clave de Cloud Key Management Service, esa operación se factura según la tarifa de las operaciones de clave de Cloud KMS (consulta Precios de Cloud Key Management Service)

Etiquetado de datos

Vertex AI te permite solicitar el etiquetado manual de un conjunto de datos que tengas planeado usar para entrenar un modelo de aprendizaje automático personalizado. Los precios del servicio se calculan en función del tipo de tarea de etiquetado.

  • Para las tareas de etiquetado regulares, los precios se calculan según la cantidad de unidades de anotación.
    • Para las tareas de clasificación de imágenes, las unidades se calculan según la cantidad de imágenes y de etiquetadores manuales. Por ejemplo, una imagen con 3 etiquetadores manuales se considera como 3 unidades (1 × 3 = 3). El precio por clasificar una o múltiples etiquetas es el mismo.
    • Para las tareas de cuadro de límite de imágenes, las unidades se calculan por la cantidad de cuadros de límite identificados en las imágenes y la cantidad de etiquetadores manuales. Por ejemplo, una imagen con 2 cuadros de límite y 3 etiquetadores manuales se considera como 6 unidades (2 × 3 = 6). Las imágenes sin cuadros de límite no se cobran.
    • En el caso de las tareas de polígono, polilínea, cuadro rotado o segmentación de imágenes, las unidades se calculan de la misma manera que para las tareas de cuadro de límite de imágenes.
    • Para las tareas de clasificación de videos, las unidades se calculan según la duración del video (cada fragmento de 5 segundos constituye una unidad de precio) y la cantidad de etiquetadores manuales. Por ejemplo, un video de 25 segundos con 3 etiquetadores humanos se considera como 15 unidades (25 ÷ 5 × 3 = 15). El precio por clasificar una o múltiples etiquetas es el mismo.
    • Para las tareas de seguimiento de objetos en un video, las unidades se calculan según la cantidad de objetos identificados y la cantidad de etiquetadores manuales. Por ejemplo, un video con 2 objetos y 3 etiquetadores manuales se considerará como 6 unidades (2 × 3 = 6). Los videos sin objetos no se cobran.
    • Para una tarea de reconocimiento de acciones en video, las unidades se determinan de la misma manera que una tarea de seguimiento de objetos de video.
    • Para las tareas de clasificación de texto, las unidades se calculan según la longitud del texto (cada fragmento de 50 palabras constituye una unidad de precio) y la cantidad de etiquetadores manuales. Por ejemplo, un fragmento de texto con 100 palabras y 3 etiquetadores manuales se considera como 6 unidades (100 ÷ 50 × 3 = 6). El precio por clasificar una o múltiples etiquetas es el mismo.
    • En el caso de las tareas de análisis de opiniones en texto, las unidades se calculan de la misma manera que para las tareas de clasificación de texto.
    • Para las tareas de extracción de entidades en un texto, las unidades se calculan según la longitud del texto (cada fragmento de 50 palabras constituye una unidad de precio), la cantidad de entidades identificadas y la cantidad de etiquetadores manuales. Por ejemplo, un fragmento de texto con 100 palabras, 2 entidades identificadas y 3 etiquetadores manuales se considera como 12 unidades (100 ÷ 50 × 2 × 3 = 12). El texto sin entidades no se cobra.
  • Para las tareas de análisis de opiniones en texto y clasificación de imágenes, video y texto, los etiquetadores manuales pueden perder de vista las clases si el tamaño del conjunto de etiquetas es demasiado grande. Por ello, enviamos un máximo de 20 clases a los etiquetadores manuales a la vez. Por ejemplo, si el tamaño del conjunto de etiquetas de una tarea de etiquetado es de 40, cada elemento de datos se enviará a revisión manual 2 veces (40 ÷ 20 = 2), y cobraremos 2 veces el precio (según el cálculo anterior) en consecuencia.

  • Para una tarea de etiquetado que habilita la función de etiquetador personalizado, cada elemento de datos se cuenta como 1 unidad de etiquetador personalizado.

  • En una tarea de etiquetado de aprendizaje activo para los elementos de datos con anotaciones que generan los modelos (sin ayuda del etiquetador), cada elemento de datos se cuenta como 1 unidad de aprendizaje activo.

  • En una tarea de etiquetado de aprendizaje activo para los elementos de datos con anotaciones que generan los etiquetadores manuales, cada elemento de datos se cuenta como una tarea de etiquetado regular, como se describió anteriormente.

En la siguiente tabla, se muestra el precio por 1,000 unidades por etiquetador manual, según la unidad que se indica para cada objetivo. Los precios del nivel 1 se aplican a las primeras 50,000 unidades por mes en cada proyecto de Google Cloud; los precios del nivel 2 se aplican a las siguientes 950,000 unidades por mes en el proyecto, hasta 1,000,000 de unidades. Comunícate con nosotros para conocer los precios para más de 1,000,000 de unidades por mes.

Tipo de datos Objetivo Unidad Nivel 1 Nivel 2
Imagen Clasificación Imagen $35 $25
Cuadro de límite Cuadro de límite $63 $49
Segmentación Segmento $870 $850
Cuadro rotado Cuadro de límite $86 $60
Polígono/polilínea Polígono/polilínea $257 $180
Video Clasificación 5 s de video $86 $60
Seguimiento de objetos Cuadro de límite $86 $60
Reconocimiento de acciones Evento en 30 s de video $214 $150
Texto Clasificación 50 palabras $129 $90
Opinión 50 palabras $200 $140
Extracción de entidades Entidad $86 $60
Aprendizaje activo All Elemento de datos $80 $56
Etiquetador personalizado All Elemento de datos $80 $56

Uso obligatorio de Cloud Storage

Además de los costos que se describen en este documento, debes almacenar los datos y los archivos de programa en buckets de Cloud Storage durante el ciclo de vida de Vertex AI. Este almacenamiento está sujeto a la política de precios de Cloud Storage.

El uso obligatorio de Cloud Storage incluye lo siguiente:

  • Realizar la etapa de pruebas de tu paquete de aplicación de entrenamiento para modelos con entrenamiento personalizado.

  • Almacenar tus datos de entrada de entrenamiento

  • Almacenar los resultados de los trabajos de entrenamiento: Vertex AI no requiere el almacenamiento a largo plazo de estos elementos. así que puedes quitar los archivos apenas finalice la operación

Operaciones gratuitas para la administración de los recursos

Las operaciones de administración de recursos que proporciona AI Platform están disponibles sin costo. La política de cuotas de AI Platform limita algunas de estas operaciones.

Recurso Operaciones gratuitas
models create, get, list, delete
versions create, get, list, delete, setDefault
jobs get, list, cancel
operations get, list, cancel, delete

Costos de Google Cloud

Si almacenas imágenes que se analizarán en Cloud Storage o usas otros recursos de Google Cloud en conjunto con Vertex AI, también se te facturará por el uso de esos servicios.

Para ver el estado actual de tu facturación en la consola, incluidos el uso y tu factura actual, consulta la página Facturación. Si quieres obtener más información sobre la administración de tu cuenta, consulta la documentación de la Facturación de Cloud o la asistencia para la facturación y pagos.

¿Qué sigue?