AI Platform Notebooks

An enterprise notebook service to get your projects up and running in minutes.

View documentation for this product.

Jupyter notebook

Managed JupyterLab notebook instances

AI Platform Notebooks is a managed service that offers an integrated and secure JupyterLab environment for data scientists and machine learning developers to experiment, develop, and deploy models into production. Users can create instances running JupyterLab that come pre-installed with the latest data science and machine learning frameworks in a single click. 

What's new

Deploy faster

Get up and running fast

You can deploy new JupyterLab instances with one click and start analyzing your data immediately. Each instance comes pre-configured with optimized versions of the most popular data science and machine learning libraries including TensorFlow, Keras, PyTorch, fast.ai, RAPIDS, NumPy, scikit-learn, pandas, and Matplotlib. 

Scale on demand

Scale on demand

You can start small and scale up by adding CPUs, RAM, and GPUs. When your data gets too big for one machine, seamlessly switch to distributed services like BigQuery, Dataproc, Dataflow, and AI Platform Training and Prediction. You pay for the instances only while they are running. 

Seamless experience

Seamless experience

You’ll go from data to a deployed machine learning model without leaving AI Platform Notebooks. Pull data from BigQuery, use Dataproc to transform it, and leverage AI Platform services or Kubeflow for distributed training and online prediction.

Features

Managed JupyterLab experience

AI Platform Notebooks is built on the industry standard JupyterLab. So you can use it with the RPython and R data science community and customize your environment by installing JupyterLab plugins. 

Secure development

AI Platform Notebooks supports popular enterprise security architectures through VPC-SC, shared VPC, and private IP controls. You can also encrypt your data on disk with CMEK.

Controlled user access

You can choose between two predefined user access modes: restrict AI Platform Notebooks to a single-user or use a service account. You can also customize access based on your enterprise security architecture based on Cloud Identity and Access Management.

Advanced networking

You can select any virtual private cloud for their AI Platform Notebook instances, provided that they have access either through Google Private Access or the internet to Cloud Storage. You can also turn off public IP address and access your instance via proxy.

Support for data science frameworks

We provide a pre-configured environment that supports the most popular data science libraries, including R, pandas, NumPy, SciPy, scikit-learn, and Matplotlib, and ML frameworks like TensorFlow, Keras, fast.ai, RAPIDS, XGBoost, and PyTorch.

Optimized for machine learning

Notebooks' optimized versions of TensorFlow and PyTorch enable you to get the most out of Google Cloud hardware and seamlessly add and remove GPUs from your instance.

Git support

It’s easy to pull and push notebooks from your Git repository, making it also easy to share your notebooks with colleagues.

Bring your own container

You can run a AI Platform Notebook instance on a container of your choice. This provides you the flexibility to install specific libraries mandated by your organization or preconfigure the environment running JupyterLab to your preference.

Machine learning development: the end-to-end cycle

Machine learning development the end-to-end cycle

Resources

Pricing

There are no minimum fees or up-front commitments. There’s no charge for using Notebooks. You pay only for the cloud resources you use with the Notebooks instance: Compute Engine, Cloud Storage, AI Platform Training, AI Platform Predictions, BigQuery, and others. Our pricing calculator can help you estimate the costs of running your workloads.

Take the next step

Get $300 in free credits to learn and build on Google Cloud for up to 12 months.

Need help getting started?
Work with a trusted partner
Continue browsing

Cloud AI products comply with the SLA policies listed here. They may offer different latency or availability guarantees from other Google Cloud services.