Bilder mit der Funktion ML.ANNOTATE_IMAGE annotieren
In diesem Dokument wird beschrieben, wie Sie die Funktion ML.ANNOTATE_IMAGE
mit einem Remote-Modell verwenden, um Bilder aus einer Objekttabelle zu annotieren.
Erforderliche Berechtigungen
Zum Erstellen einer Verbindung benötigen Sie die Mitgliedschaft in der folgenden Rolle:
roles/bigquery.connectionAdmin
Zum Erteilen von Berechtigungen für das Dienstkonto der Verbindung benötigen Sie die folgende Berechtigung:
resourcemanager.projects.setIamPolicy
Zum Erstellen des Modells mit BigQuery ML benötigen Sie die folgenden Berechtigungen:
bigquery.jobs.create
bigquery.models.create
bigquery.models.getData
bigquery.models.updateData
bigquery.models.updateMetadata
Zum Ausführen von Inferenzen benötigen Sie die folgenden Berechtigungen:
bigquery.tables.getData
für die Objekttabellebigquery.models.getData
für das Modellbigquery.jobs.create
Vorbereitung
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery, BigQuery Connection API, and Cloud Vision API APIs.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery, BigQuery Connection API, and Cloud Vision API APIs.
Verbindung herstellen
Erstellen Sie eine Cloud-Ressourcenverbindung und rufen Sie das Dienstkonto der Verbindung ab.
Wählen Sie eine der folgenden Optionen aus:
Console
Rufen Sie die Seite BigQuery auf.
Klicken Sie auf
Hinzufügen und dann auf Verbindungen zu externen Datenquellen, um eine Verbindung zu erstellen.Wählen Sie in der Liste Verbindungstyp die Option Vertex AI-Remote-Modelle, Remote-Funktionen und BigLake (Cloud Resource) aus.
Geben Sie im Feld Verbindungs-ID einen Namen für die Verbindung ein.
Klicken Sie auf Verbindung erstellen.
Klicken Sie auf Zur Verbindung.
Kopieren Sie im Bereich Verbindungsinformationen die Dienstkonto-ID zur Verwendung in einem späteren Schritt.
bq
Erstellen Sie in einer Befehlszeilenumgebung eine Verbindung:
bq mk --connection --location=REGION --project_id=PROJECT_ID \ --connection_type=CLOUD_RESOURCE CONNECTION_ID
Der Parameter
--project_id
überschreibt das Standardprojekt.Ersetzen Sie dabei Folgendes:
REGION
: Ihre VerbindungsregionPROJECT_ID
: Ihre Google Cloud-Projekt-IDCONNECTION_ID
: eine ID für Ihre Verbindung
Wenn Sie eine Verbindungsressource herstellen, erstellt BigQuery ein eindeutiges Systemdienstkonto und ordnet es der Verbindung zu.
Fehlerbehebung:Wird der folgende Verbindungsfehler angezeigt, aktualisieren Sie das Google Cloud SDK:
Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
Rufen Sie die Dienstkonto-ID ab und kopieren Sie sie zur Verwendung in einem späteren Schritt:
bq show --connection PROJECT_ID.REGION.CONNECTION_ID
Die Ausgabe sieht in etwa so aus:
name properties 1234.REGION.CONNECTION_ID {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
Terraform
Hängen Sie folgenden Abschnitt an Ihre main.tf
-Datei an.
## This creates a cloud resource connection. ## Note: The cloud resource nested object has only one output only field - serviceAccountId. resource "google_bigquery_connection" "connection" { connection_id = "CONNECTION_ID" project = "PROJECT_ID" location = "REGION" cloud_resource {} }
CONNECTION_ID
: eine ID für Ihre VerbindungPROJECT_ID
: Ihre Google Cloud-Projekt-IDREGION
: Ihre Verbindungsregion
Zugriff auf das Dienstkonto gewähren
Wählen Sie eine der folgenden Optionen aus:
Console
Zur Seite IAM & Verwaltung.
Klicken Sie auf
Hinzufügen.Das Dialogfeld Principals hinzufügen wird geöffnet.
Geben Sie im Feld Neue Hauptkonten die Dienstkonto-ID ein, die Sie zuvor kopiert haben.
Wählen Sie im Feld Rolle auswählen die Option Dienstnutzung und dann Nutzer der Dienstnutzung aus.
Klicken Sie auf Weitere Rolle hinzufügen.
Wählen Sie im Feld Rolle auswählen die Option BigQuery aus und wählen Sie dann BigQuery Connection User aus.
Klicken Sie auf Speichern.
gcloud
Führen Sie den Befehl gcloud projects add-iam-policy-binding
aus:
gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/serviceusage.serviceUsageConsumer' --condition=None gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/bigquery.connectionUser' --condition=None
Dabei gilt:
PROJECT_NUMBER
: Ihre Projektnummer.MEMBER
: Die Dienstkonto-ID, die Sie zuvor kopiert haben.
Wird die Berechtigung nicht erteilt, wird ein Fehler ausgegeben.
Objekttabelle erstellen
Erstellen Sie eine Objekttabelle mit Bildinhalten. Mit der Objekttabelle können Sie die Bilder analysieren, ohne sie aus Cloud Storage zu verschieben.
Der von der Objekttabelle verwendete Cloud Storage-Bucket sollte sich im selben Projekt befinden, in dem Sie das Modell erstellen und die Funktion ML.ANNOTATE_IMAGE
aufrufen möchten. Wenn Sie die ML.ANNOTATE_IMAGE
-Funktion in einem anderen Projekt als dem aufrufen möchten, das den von der Objekttabelle verwendeten Cloud Storage-Bucket enthält, müssen Sie dem Dienstkonto die Rolle "Storage Admin" auf Bucket-Ebene zuweisen.
Modell erstellen
Erstellen Sie ein Remote-Modell mit einem REMOTE_SERVICE_TYPE
von CLOUD_AI_VISION_V1
:
CREATE OR REPLACE MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME` REMOTE WITH CONNECTION PROJECT_ID.REGION.CONNECTION_ID OPTIONS (REMOTE_SERVICE_TYPE = 'CLOUD_AI_VISION_V1');
Dabei gilt:
PROJECT_ID
: Ihre Projekt-ID.DATASET_ID
ist die ID des Datasets, das das Modell enthalten soll. Dieses Dataset muss sich am selben Standort wie die von Ihnen verwendete Verbindung befinden.MODEL_NAME
ist der Name des Modells.REGION
ist die Region, die von der Verbindung verwendet wird.CONNECTION_ID
: die Verbindungs-ID, z. B.myconnection
.Wenn Sie sich Verbindungsdetails in der Google Cloud Console ansehen, ist die Verbindungs-ID der Wert im letzten Abschnitt der voll qualifizierten Verbindungs-ID, der unter Verbindungs-ID angezeigt wird, z. B.
projects/myproject/locations/connection_location/connections/myconnection
.
Bilder annotieren
Bilder mit der Funktion ML.ANNOTATE_IMAGE
annotieren:
SELECT * FROM ML.ANNOTATE_IMAGE( MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`, TABLE PROJECT_ID.DATASET_ID.OBJECT_TABLE_NAME, STRUCT(['FEATURE_NAME' [,...]] AS vision_features) );
Ersetzen Sie Folgendes:
PROJECT_ID
: Ihre Projekt-ID.DATASET_ID
ist die ID des Datasets, das das Modell enthält.MODEL_NAME
ist der Name des Modells.OBJECT_TABLE_NAME
ist der Name der Objekttabelle, die die URIs der Bilder enthält, die annotiert werden sollen.FEATURE_NAME
ist der Name eines unterstützten Cloud Vision API-Features
Beispiel 1
Im folgenden Beispiel werden die in den Bildern angezeigten Elemente mit Labels versehen:
SELECT * FROM ML.ANNOTATE_IMAGE( MODEL `myproject.mydataset.myvisionmodel`, TABLE myproject.mydataset.image_table, STRUCT(['label_detection'] AS vision_features) );
Beispiel 2
Im folgenden Beispiel werden alle in den Bildern angezeigten Gesichter erkannt und Bildattribute wie dominante Farben zurückgegeben:
SELECT * FROM ML.ANNOTATE_IMAGE( MODEL `myproject.mydataset.myvisionmodel`, TABLE myproject.mydataset.image_table, STRUCT(['face_detection', 'image_properties'] AS vision_features) );
Nächste Schritte
- Weitere Informationen zur Modellinferenz, einschließlich anderer Funktionen, mit denen Sie BigQuery-Daten analysieren können, finden Sie unter Übersicht über die Modellinferenz.
- Informationen zu den unterstützten SQL-Anweisungen und -Funktionen für die einzelnen Modelltypen finden Sie unter End-to-End-Nutzerpfad für jedes Modell.
- Testen Sie das Notebook Unstrukturierte Datenanalysen mit BigQuery ML und vortrainierten Vertex AI-Modellen.