Cloud Data Fusion - Preise
In diesem Dokument werden die Preise für Cloud Data Fusion erläutert. Informationen zu Preisen für andere Produkte finden Sie in der Preisliste.
Zur Preisberechnung wird die Nutzung vom Erstellen einer Cloud Data Fusion-Instanz bis zu deren Löschen in Minuten gemessen. Obwohl Stundenpreise angegeben werden, erfolgt die Abrechnung von Cloud Data Fusion pro Minute. Die Nutzung wird also in Stunden angegeben (30 Minuten entsprechen z. B. 0,5 Stunden), damit trotz minutengenauer Abrechnung ein Preis pro Stunde berechnet werden kann.
Wenn Sie nicht in US-Dollar bezahlen, gelten die Preise, die unter Google Cloud SKUs für Ihre Währung angegeben sind.
Preisübersicht
Die Preise für Cloud Data Fusion verteilen sich auf zwei Funktionen: Pipelineentwicklung und Pipelineausführung.
Entwicklung
Für die Pipelineentwicklung bietet Cloud Data Fusion die folgenden drei Versionen an:
Cloud Data Fusion-Edition | Preis pro Instanz und Stunde |
---|---|
Developer | 0,35 $ (ca. 250 $ pro Monat) |
Basic | 1,80 $ (ca. 1.100 $ pro Monat) |
Enterprise | 4,20 $ (ca. 3.000 $ pro Monat) |
Die ersten 120 Stunden pro Monat und Konto werden in der Basic-Version kostenlos angeboten.
Ausführung
Für die Ausführung von Pipelines gilt: Cloud Data Fusion erstellt Dataproc-Cluster, um Ihre Pipelines auszuführen. Diese Cluster werden Ihnen zu den aktuellen Preisen für Dataproc in Rechnung gestellt.
Vergleich von Developer, Basic und Enterprise
Leistungsvermögen | Entwickler | Einfach | Unternehmen |
---|---|---|---|
Anzahl der gleichzeitigen Nutzer | 2 | Eingeschränkte* | Eingeschränkte* |
Arbeitslasten | Entwicklung, explorative Produktanalyse | Tests, Sandbox, PoC | Produktion |
Unterstützung für interne IPs | |||
Rollenbasierte Zugriffssteuerung | |||
Visuelle Gestaltung | |||
Connector-System | |||
Visuelle Transformationen | |||
Strukturiert, unstrukturiert, halbstrukturiert | |||
Streamingpipelines | |||
Herkunft integrierter Datasets – Feld- und Dataset-Ebene | |||
Integration mit Dataplex | |||
Hochverfügbarkeit | Zonal | Regional | Regional |
Compute-Profile erstellen und anpassen | |||
DevOps-Unterstützung: REST API, Source Control Management | |||
Trigger und Zeitpläne | |||
Auswahl der Ausführungsumgebung | |||
Gleichzeitige Pipelineausführung | Eingeschränkte** | Eingeschränkte** | |
Entwickler-SDK für Erweiterungen |
Nutzung anderer Google Cloud-Ressourcen
Neben den Entwicklungskosten einer Cloud Data Fusion-Instanz werden Ihnen nur die Ressourcen in Rechnung gestellt,die Sie für die Ausführung Ihrer Pipelines verwenden, z. B.:
Unterstützte Regionen
Hinweis: Die Preise für Cloud Data Fusion sind derzeit für alle unterstützten Regionen gleich.
Region | Standort |
---|---|
africa-south1
* |
Johannesburg, Südafrika |
asia-east1 |
Bezirk Changhua, Taiwan |
asia-east2 |
Hongkong |
asia-northeast1 |
Tokio, Japan |
asia-northeast2 |
Osaka, Japan |
asia-northeast3 |
Seoul, Südkorea |
asia-south1 |
Mumbai, Indien |
asia-south2 |
Delhi, Indien |
asia-southeast1 |
Jurong West, Singapur |
asia-southeast2 |
Jakarta, Indonesien |
australia-southeast1 |
Sydney, Australien |
europe-north1 |
Hamina, Finnland |
europe-southwest1 |
Madrid, Spanien |
europe-west1 |
St. Ghislain, Belgien |
europe-west2 |
London, England, Vereinigtes Königreich |
europe-west3 |
Frankfurt, Deutschland |
europe-west4 |
Eemshaven, Niederlande |
europe-west6 |
Zürich, Schweiz |
europe-west8 |
Mailand, Italien |
europe-west9 |
Paris, Frankreich |
europe-west12
* |
Turin, Italien |
me-central1 * |
Doha, Katar |
me-central2 * |
Dammam, Saudi-Arabien |
me-west1 |
Tel Aviv, Israel |
northamerica-northeast1 |
Montréal, Québec, Kanada |
southamerica-east1 |
Osasco (São Paulo), Brasilien |
southamerica-west1 |
Santiago, Chile |
us-central1 |
Council Bluffs, Iowa, Nordamerika |
us-east1 |
Moncks Corner, South Carolina, Nordamerika |
us-east4 |
Ashburn, Nord-Virginia, Nordamerika |
us-east5 |
Columbus, Ohio, Nordamerika |
us-south1 |
Dallas, Texas, Nordamerika |
us-west1 |
The Dalles, Oregon, Nordamerika |
us-west2 |
Los Angeles, Kalifornien, Nordamerika |
africa-south1
,
me-central1
, me-central1
oder
europe-west12
nicht unterstützt.
Preisbeispiel
Nehmen wir an, eine Cloud Data Fusion-Instanz wurde 24 Stunden lang ausgeführt und die kostenlosen Stunden in der Basic-Version wurden verbraucht. Die Instanzbezogenen Kosten für Cloud Data Fusion sind in der folgenden Tabelle nach Version zusammengefasst:
Edition | Kosten pro Stunde | Anzahl Stunden | Entwicklungskosten |
---|---|---|---|
Developer | 0,35 $ | 24 | 24*0,35 = 8,4 $ |
Einfach | 1,80 $ | 24 | 24 × 1,8 = 43,2 $ |
Unternehmen | 4,20 $ | 24 | 24*4,2 = 100,8 $ |
In diesem Zeitraum von 24 Stunden wurde eine Pipeline ausgeführt. Dabei wurden stündlich Rohdaten aus Cloud Storage gelesen, Transformationen durchgeführt und die Daten in BigQuery geschrieben. Jede Ausführung dauerte ungefähr 15 Minuten. Die für die Ausführungen erstellten Dataproc-Cluster waren demnach jeweils 15 Minuten (0,25 Stunden) aktiv. Angenommen, jeder Dataproc-Cluster war so konfiguriert:
Posten | Maschinentyp | Virtuelle CPUs | Hinzugefügter nichtflüchtiger Speicher | Anzahl im Cluster |
---|---|---|---|---|
Master-Knoten | n1-standard-4 | 4 | 500 GB | 1 |
Worker-Knoten | n1-standard-4 | 4 | 500 GB | 5 |
Jeder Dataproc-Cluster hat 24 virtuelle CPUs: 4 für den Master und 20 verteilt auf die Worker. Zur Abrechnung von Dataproc wird der Preis für diesen Cluster anhand dieser 24 virtuellen CPUs und der Laufzeit des Clusters berechnet.
Der für Dataproc anfallende Gesamtpreis für alle Ausführungen der Pipeline lässt sich so berechnen:
Dataproc charge = # of vCPUs * number of clusters * hours per cluster * Dataproc price = 24 * 24 * 0.25 * $0.01 = $1.44
Die Dataproc-Cluster verwenden andere Google Cloud-Produkte, die separat in Rechnung gestellt werden. Im Besonderen fallen für diese Cluster Gebühren für Compute Engine sowie für bereitgestellten nichtflüchtigen Standardspeicher an. Je nach Datenmenge, die die Pipeline verarbeitet, fallen Speichergebühren für Cloud Storage und BigQuery an.
Diese zusätzlichen Kosten können Sie anhand der aktuellen Preise mithilfe des Preisrechners ermitteln.
Nächste Schritte
- Lesen Sie die Cloud Data Fusion-Dokumentation.
- Cloud Data Fusion loslegen
- Preisrechner ausprobieren