Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Anomalieerkennung – Übersicht
Die Anomalieerkennung ist ein Data-Mining-Verfahren, mit dem Sie Datenabweichungen in einem bestimmten Datensatz ermitteln können. Wenn sich die Rücksenderate für ein bestimmtes Produkt beispielsweise deutlich über dem Normalwert für dieses Produkt erhöht, kann das auf einen Produktfehler oder potenziellen Betrug hinweisen. Mithilfe der Anomalieerkennung können Sie kritische Vorfälle wie technische Probleme oder Chancen wie Änderungen des Verbraucherverhaltens erkennen.
Eine Herausforderung bei der Anomalieerkennung besteht darin, zu bestimmen, was als anormale Daten gilt. Wenn Sie Daten mit Labels haben, anhand derer Anomalien identifiziert werden, können Sie die Anomalieerkennung mit der Funktion ML.PREDICT und einem der folgenden beaufsichtigten Modelle für maschinelles Lernen durchführen:
Wenn Sie sich nicht sicher sind, was als anormale Daten gilt, oder keine mit Labels versehenen Daten zum Trainieren eines Modells haben, können Sie die Anomalieerkennung mit unbeaufsichtigtem maschinellem Lernen durchführen. Verwenden Sie die ML.DETECT_ANOMALIES-Funktion mit einem der folgenden Modelle, um Anomalien in Trainingsdaten oder neuen Auslieferungsdaten zu erkennen:
Anomalien auf der Grundlage der kürzesten Entfernung bei den normalisierten Entfernungen von den Eingabedaten zu jedem Clusterschwerpunkt erkennen. Eine Definition der normalisierten Entfernungen finden Sie in der K-Means-Modellausgabe für die Funktion ML.DETECT_ANOMALIES.
Anomalien aufgrund des Rekonstruktionsverlusts in Bezug auf den mittleren quadratischen Fehler erkennen. Weitere Informationen finden Sie unter ML.RECONSTRUCTION_LOSS. Die Funktion ML.RECONSTRUCTION_LOSS kann
alle Arten von Rekonstruktionsverlusten abrufen.
Anomalien anhand des Rekonstruktionsverlusts in Bezug auf den mittleren quadratischen Fehler erkennen.
Empfohlene Kenntnisse
Mit den Standardeinstellungen in den CREATE MODEL-Anweisungen und den Inferenzfunktionen können Sie auch ohne viel ML-Kenntnisse ein Modell zur Anomalieerkennung erstellen und verwenden. Grundlegende Kenntnisse zur ML-Entwicklung helfen Ihnen jedoch, sowohl Ihre Daten als auch Ihr Modell zu optimieren, um bessere Ergebnisse zu erzielen. Wir empfehlen die folgenden Ressourcen, um sich mit ML-Techniken und -Prozessen vertraut zu machen:
[[["Leicht verständlich","easyToUnderstand","thumb-up"],["Mein Problem wurde gelöst","solvedMyProblem","thumb-up"],["Sonstiges","otherUp","thumb-up"]],[["Schwer verständlich","hardToUnderstand","thumb-down"],["Informationen oder Beispielcode falsch","incorrectInformationOrSampleCode","thumb-down"],["Benötigte Informationen/Beispiele nicht gefunden","missingTheInformationSamplesINeed","thumb-down"],["Problem mit der Übersetzung","translationIssue","thumb-down"],["Sonstiges","otherDown","thumb-down"]],["Zuletzt aktualisiert: 2025-09-04 (UTC)."],[[["\u003cp\u003eAnomaly detection is a data mining technique used to identify deviations in datasets, which can signal product defects, fraud, or changes in consumer behavior.\u003c/p\u003e\n"],["\u003cp\u003eIf you have labeled data, supervised machine learning models like linear regression, boosted trees, random forest, DNN, Wide & Deep, and AutoML models can be used with the \u003ccode\u003eML.PREDICT\u003c/code\u003e function for anomaly detection.\u003c/p\u003e\n"],["\u003cp\u003eWhen you lack labeled data or are uncertain about what constitutes anomalous data, unsupervised machine learning can be employed with the \u003ccode\u003eML.DETECT_ANOMALIES\u003c/code\u003e function.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003eML.DETECT_ANOMALIES\u003c/code\u003e function supports various model types, including ARIMA_PLUS, ARIMA_PLUS_XREG, K-means, Autoencoder, and PCA, each suited for different data types such as time series or independent and identically distributed random variables.\u003c/p\u003e\n"],["\u003cp\u003eBasic knowledge of ML can enhance anomaly detection results, and resources such as the Machine Learning Crash Course, Intro to Machine Learning, and Intermediate Machine Learning are recommended to develop this knowledge.\u003c/p\u003e\n"]]],[],null,["# Anomaly detection overview\n==========================\n\nAnomaly detection is a data mining technique that you can use to identify data\ndeviations in a given dataset. For example, if the return rate for a given\nproduct increases substantially from the baseline for that product, that might\nindicate a product defect or potential fraud. You can use anomaly detection to\ndetect critical incidents, such as technical issues, or opportunities, such as\nchanges in consumer behavior.\n\nOne challenge when you use anomaly detection is determining what counts as\nanomalous data. If you have labeled data that identifies anomalies, you can\nperform anomaly detection by using the\n[`ML.PREDICT` function](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-predict)\nwith one of the following supervised machine learning models:\n\n- [Linear and logistic regression models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-glm)\n- [Boosted trees models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-boosted-tree)\n- [Random forest models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-random-forest)\n- [Deep neural network (DNN) models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-dnn-models)\n- [Wide \\& Deep models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-wnd-models)\n- [AutoML models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-automl)\n\nIf you aren't certain what counts as anomalous data, or you don't have labeled\ndata to train a model on, you can use unsupervised machine learning to perform\nanomaly detection. Use the\n[`ML.DETECT_ANOMALIES` function](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-detect-anomalies)\nwith one of the following models to detect anomalies in training data or new\nserving data:\n\nRecommended knowledge\n---------------------\n\nBy using the default settings in the `CREATE MODEL` statements and the\ninference functions, you can create and use an anomaly detection\nmodel even without much ML knowledge. However, having basic knowledge about\nML development helps you optimize both your data and your model to\ndeliver better results. We recommend using the following resources to develop\nfamiliarity with ML techniques and processes:\n\n- [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course)\n- [Intro to Machine Learning](https://www.kaggle.com/learn/intro-to-machine-learning)\n- [Intermediate Machine Learning](https://www.kaggle.com/learn/intermediate-machine-learning)"]]