使用多变量时序预测模型执行异常值检测

本教程介绍了如何执行以下任务:

本教程使用公共 epa_historical_air_quality 数据集中的以下表,该数据集包含从美国多个城市收集的每日 PM 2.5、温度和风速信息:

所需权限

  • 如需创建数据集,您需要拥有 bigquery.datasets.create IAM 权限。
  • 如需创建连接资源,您需要以下权限:

    • bigquery.connections.create
    • bigquery.connections.get
  • 如需创建模型,您需要以下权限:

    • bigquery.jobs.create
    • bigquery.models.create
    • bigquery.models.getData
    • bigquery.models.updateData
    • bigquery.connections.delegate
  • 如需运行推理,您需要以下权限:

    • bigquery.models.getData
    • bigquery.jobs.create

如需详细了解 BigQuery 中的 IAM 角色和权限,请参阅 IAM 简介

费用

在本文档中,您将使用 Google Cloud 的以下收费组件:

  • BigQuery: You incur costs for the data you process in BigQuery.

您可使用价格计算器根据您的预计使用情况来估算费用。 Google Cloud 新用户可能有资格申请免费试用

如需了解详情,请参阅 BigQuery 价格

须知事项

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the BigQuery API.

    Enable the API

  5. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  6. Make sure that billing is enabled for your Google Cloud project.

  7. Enable the BigQuery API.

    Enable the API

创建数据集

创建 BigQuery 数据集以存储您的机器学习模型:

  1. 在 Google Cloud 控制台中,转到 BigQuery 页面。

    转到 BigQuery 页面

  2. 探索器窗格中,点击您的项目名称。

  3. 点击 查看操作 > 创建数据集

    创建数据集。

  4. 创建数据集页面上,执行以下操作:

    • 数据集 ID 部分,输入 bqml_tutorial

    • 位置类型部分,选择多区域,然后选择 US (multiple regions in United States)(美国[美国的多个区域])。

      公共数据集存储在 US 多区域中。为简单起见,请将数据集存储在同一位置。

    • 保持其余默认设置不变,然后点击创建数据集

      创建数据集页面。

准备训练数据

PM2.5、温度和风速数据位于不同的表中。通过组合这些公开表中的数据来创建 bqml_tutorial.seattle_air_quality_daily 训练数据表。bqml_tutorial.seattle_air_quality_daily 包含以下列:

  • date:观察的日期
  • PM2.5:每天的平均 PM2.5 值
  • wind_speed:每天的平均风速
  • temperature:每天的最高温度

新表包含 2009 年 8 月 11 日至 2022 年 1 月 31 日的每日数据。

  1. 转到 BigQuery 页面。

    转到 BigQuery

  2. 在 SQL 编辑器窗格中,运行以下 SQL 语句:

    CREATE TABLE `bqml_tutorial.seattle_air_quality_daily`
    AS
    WITH
      pm25_daily AS (
        SELECT
          avg(arithmetic_mean) AS pm25, date_local AS date
        FROM
          `bigquery-public-data.epa_historical_air_quality.pm25_nonfrm_daily_summary`
        WHERE
          city_name = 'Seattle'
          AND parameter_name = 'Acceptable PM2.5 AQI & Speciation Mass'
        GROUP BY date_local
      ),
      wind_speed_daily AS (
        SELECT
          avg(arithmetic_mean) AS wind_speed, date_local AS date
        FROM
          `bigquery-public-data.epa_historical_air_quality.wind_daily_summary`
        WHERE
          city_name = 'Seattle' AND parameter_name = 'Wind Speed - Resultant'
        GROUP BY date_local
      ),
      temperature_daily AS (
        SELECT
          avg(first_max_value) AS temperature, date_local AS date
        FROM
          `bigquery-public-data.epa_historical_air_quality.temperature_daily_summary`
        WHERE
          city_name = 'Seattle' AND parameter_name = 'Outdoor Temperature'
        GROUP BY date_local
      )
    SELECT
      pm25_daily.date AS date, pm25, wind_speed, temperature
    FROM pm25_daily
    JOIN wind_speed_daily USING (date)
    JOIN temperature_daily USING (date)

创建模型

使用 bqml_tutorial.seattle_air_quality_daily 中的数据作为训练数据,创建多变量时序模型。

  1. 转到 BigQuery 页面。

    转到 BigQuery

  2. 在 SQL 编辑器窗格中,运行以下 SQL 语句:

    CREATE OR REPLACE MODEL `bqml_tutorial.arimax_model`
      OPTIONS (
        model_type = 'ARIMA_PLUS_XREG',
        auto_arima=TRUE,
        time_series_data_col = 'temperature',
        time_series_timestamp_col = 'date'
        )
    AS
    SELECT
      *
    FROM
      `bqml_tutorial.seattle_air_quality_daily`;

    查询需要几秒钟才能完成,之后模型 arimax_model 会显示在探索器窗格的 bqml_tutorial 数据集中。

    由于查询使用 CREATE MODEL 语句来创建模型,因此没有查询结果。

对历史数据执行异常值检测

针对用于训练模型的历史数据运行异常值检测。

  1. 转到 BigQuery 页面。

    转到 BigQuery

  2. 在 SQL 编辑器窗格中,运行以下 SQL 语句:

    SELECT
      *
    FROM
      ML.DETECT_ANOMALIES (
       MODEL `bqml_tutorial.arimax_model`,
       STRUCT(0.6 AS anomaly_prob_threshold)
      )
    ORDER BY
      date ASC;

    结果类似于以下内容:

    +-------------------------+-------------+------------+--------------------+--------------------+---------------------+
    | date                    | temperature | is_anomaly | lower_bound        | upper_bound        | anomaly_probability |
    +--------------------------------------------------------------------------------------------------------------------+
    | 2009-08-11 00:00:00 UTC | 70.1        | false      | 67.65880237416745  | 72.541197625832538 | 0                   |
    +--------------------------------------------------------------------------------------------------------------------+
    | 2009-08-12 00:00:00 UTC | 73.4        | false      | 71.715603233887791 | 76.597998485552878 | 0.20589853827304627 |
    +--------------------------------------------------------------------------------------------------------------------+
    | 2009-08-13 00:00:00 UTC | 64.6        | true       | 67.741606808079425 | 72.624002059744512 | 0.94627126678202522 |
    +-------------------------+-------------+------------+--------------------+--------------------+---------------------+
    

对新数据执行异常值检测

对您生成的新数据运行异常值检测。

  1. 转到 BigQuery 页面。

    转到 BigQuery

  2. 在 SQL 编辑器窗格中,运行以下 SQL 语句:

    SELECT
      *
    FROM
      ML.DETECT_ANOMALIES (
       MODEL `bqml_tutorial.arimax_model`,
       STRUCT(0.6 AS anomaly_prob_threshold),
       (
         SELECT
           *
         FROM
           UNNEST(
             [
               STRUCT<date TIMESTAMP, pm25 FLOAT64, wind_speed FLOAT64, temperature FLOAT64>
               ('2023-02-01 00:00:00 UTC', 8.8166665, 1.6525, 44.0),
               ('2023-02-02 00:00:00 UTC', 11.8354165, 1.558333, 40.5),
               ('2023-02-03 00:00:00 UTC', 10.1395835, 1.6895835, 46.5),
               ('2023-02-04 00:00:00 UTC', 11.439583500000001, 2.0854165, 45.0),
               ('2023-02-05 00:00:00 UTC', 9.7208335, 1.7083335, 46.0),
               ('2023-02-06 00:00:00 UTC', 13.3020835, 2.23125, 43.5),
               ('2023-02-07 00:00:00 UTC', 5.7229165, 2.377083, 47.5),
               ('2023-02-08 00:00:00 UTC', 7.6291665, 2.24375, 44.5),
               ('2023-02-09 00:00:00 UTC', 8.5208335, 2.2541665, 40.5),
               ('2023-02-10 00:00:00 UTC', 9.9086955, 7.333335, 39.5)
             ]
           )
         )
       );

    结果类似于以下内容:

    +-------------------------+-------------+------------+--------------------+--------------------+---------------------+------------+------------+
    | date                    | temperature | is_anomaly | lower_bound        | upper_bound        | anomaly_probability | pm25       | wind_speed |
    +----------------------------------------------------------------------------------------------------------------------------------------------+
    | 2023-02-01 00:00:00 UTC | 44.0        | true       | 36.917405956304407 | 41.79980120796948  | 0.890904731626234   | 8.8166665  | 1.6525     |
    +----------------------------------------------------------------------------------------------------------------------------------------------+
    | 2023-02-02 00:00:00 UTC | 40.5        | false      | 34.622436643607685 | 40.884690866417984 | 0.53985850962605064 | 11.8354165 | 1.558333   |
    +--------------------------------------------------------------------------------------------------------------------+-------------------------+
    | 2023-02-03 00:00:00 UTC | 46.5        | true       | 33.769587937313183 | 40.7478502941026   | 0.97434506593220793 | 10.1395835 | 1.6895835  |
    +-------------------------+-------------+------------+--------------------+--------------------+---------------------+-------------------------+
    

清理

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.