Lokale Hosts können einen Vektorsuchindex entweder über das öffentliche Internet oder privat über eine hybride Netzwerkarchitektur erreichen, die Private Service Connect über Cloud VPN oder Cloud Interconnect verwendet. Beide Optionen bieten SSL/TLS-Verschlüsselung. Die private Option bietet jedoch eine viel bessere Leistung und wird daher für kritische Anwendungen empfohlen.
In dieser Anleitung verwenden Sie ein Hochverfügbarkeits-VPN (HA VPN), um privat auf einen Vektorsuchindex-Endpunkt zwischen zwei Virtual Private Cloud-Netzwerken (VPC) zuzugreifen, die als Grundlage für private Konnektivität in Multi-Cloud- und lokalen Umgebungen dienen können.
Diese Anleitung richtet sich an Unternehmensnetzwerkadministratoren, Data Scientists und Forscher, die mit Vertex AI, Virtual Private Cloud, der Google Cloud Console und Cloud Shell vertraut sind. Kenntnisse über die Vektorsuche ist hilfreich, aber nicht erforderlich.
Ziele
- Erstellen Sie zwei VPC-Netzwerke, wie im vorherigen Diagramm dargestellt:
- Das eine (
onprem-vpc
) steht für ein lokales Netzwerk. - Das andere (
vertex-networking-vpc
) ist für den Vektorsuchindex-Endpunkt.
- Das eine (
- Stellen Sie HA VPN-Gateways, Cloud VPN-Tunnel und Cloud Router bereit, um
vertex-networking-vpc
undonprem-vpc
zu verbinden. - Erstellen Sie einen Vektorsuchindex und stellen Sie ihn bereit.
- Erstellen Sie eine Private Service Connect-Weiterleitungsregel, um Abfragen an den Vektorsuchindex-Endpunkt weiterzuleiten.
- Konfigurieren Sie eine benutzerdefinierte beworbene Route von Cloud Router in
vertex-networking-vpc
, um Routen für den Indexendpunktonprem-vpc
anzukündigen. - Erstellen Sie eine Compute Engine-VM-Instanz in
onprem-vpc
, um eine Clientanwendung darzustellen, die Anfragen über HA VPN an den Vektorsuchindex-Endpunkt sendet.
Kosten
In diesem Dokument verwenden Sie die folgenden kostenpflichtigen Komponenten von Google Cloud:
Mit dem Preisrechner können Sie eine Kostenschätzung für Ihre voraussichtliche Nutzung vornehmen.
Nach Abschluss der in diesem Dokument beschriebenen Aufgaben können Sie weitere Kosten vermeiden, indem Sie die erstellten Ressourcen löschen. Weitere Informationen finden Sie unter Bereinigen.
Vorbereitung
-
In the Google Cloud console, go to the project selector page.
-
Select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
- Öffnen Sie Cloud Shell, um die in dieser Anleitung aufgeführten Befehle auszuführen. Cloud Shell ist eine interaktive Shell-Umgebung für Google Cloud, mit der Sie Projekte und Ressourcen über Ihren Webbrowser verwalten können.
- Legen Sie in Cloud Shell das aktuelle Projekt auf Ihre Google Cloud-Projekt-ID fest und speichern Sie dann dieselbe Projekt-ID in der Shell-Variablen
projectid
: Ersetzen Sie PROJECT_ID durch Ihre Projekt-ID. Sie finden Ihre Projekt-ID gegebenenfalls in der Google Cloud Console. Weitere Informationen finden Sie unter Projekt-ID ermitteln.projectid="PROJECT_ID" gcloud config set project ${projectid}
- Wenn Sie nicht der Projektinhaber sind, bitten Sie den Projektinhaber, Ihnen die Rolle Projekt-IAM-Administrator (roles/resourcemanager.projectIamAdmin) zuzuweisen. Sie benötigen diese Rolle, um im nächsten Schritt IAM-Rollen zuzuweisen.
-
Grant roles to your user account. Run the following command once for each of the following IAM roles:
roles/aiplatform.user, roles/compute.instanceAdmin.v1, roles/compute.networkAdmin, roles/compute.securityAdmin, roles/dns.admin, roles/iam.serviceAccountAdmin, roles/iam.serviceAccountUser, roles/iap.admin, roles/iap.tunnelResourceAccessor, roles/notebooks.admin, roles/servicemanagement.quotaAdmin, roles/servicedirectory.editor, roles/storage.admin, roles/aiplatform.admin, roles/aiplatform.user, roles/resourcemanager.projectIamAdmin
gcloud projects add-iam-policy-binding PROJECT_ID --member="user:USER_IDENTIFIER" --role=ROLE
- Replace
PROJECT_ID
with your project ID. -
Replace
USER_IDENTIFIER
with the identifier for your user account. For example,user:myemail@example.com
. - Replace
ROLE
with each individual role.
- Replace
-
Enable the DNS, IAM, Compute Engine, Notebooks, and Vertex AI APIs:
gcloud services enable dns.googleapis.com
iam.googleapis.com compute.googleapis.com notebooks.googleapis.com aiplatform.googleapis.com
VPC-Netzwerke erstellen
In diesem Abschnitt erstellen Sie zwei VPC-Netzwerke: das eine zum Erstellen eines Vektorsuchindex und zum Bereitstellen auf einem Endpunkt, das andere für den privaten Zugriff auf diesen Endpunkt.
Erstellen Sie das VPC-Netzwerk für den Vektorsuchindex-Endpunkt (vertex-networking-vpc
).
Erstellen Sie das VPC-Netzwerk für den Indexendpunkt:
gcloud compute networks create vertex-networking-vpc --project=$projectid --subnet-mode custom
Erstellen Sie ein Subnetz mit dem Namen
workbench-subnet
und den primären IPv4-Bereich172.16.20.0/28
:gcloud compute networks subnets create workbench-subnet \ --project=$projectid --range=172.16.20.0/28 \ --network=vertex-networking-vpc \ --region=us-central1 \ --enable-private-ip-google-access
Erstellen Sie ein Subnetz mit dem Namen
psc-forwarding-rule-subnet
mit einem primären IPv4-Bereich von172.16.30.0/28
:gcloud compute networks subnets create psc-forwarding-rule-subnet \ --project=$projectid \ --range=172.16.30.0/28 \ --network=vertex-networking-vpc \ --region=us-central1 \ --enable-private-ip-google-access
Erstellen Sie das VPC-Netzwerk für den privaten Zugriff auf den Endpunkt (onprem-vpc
).
Erstellen Sie das VPC-Netzwerk, um das lokale Netzwerk (
onprem-vpc
) zu simulieren:gcloud compute networks create onprem-vpc \ --subnet-mode custom
Erstellen Sie im Netzwerk
onprem-vpc
ein Subnetz mit dem Namenonprem-vpc-subnet1
und dem primären IPv4-Bereich von172.16.10.0/29
:gcloud compute networks subnets create onprem-vpc-subnet1 \ --network onprem-vpc \ --range 172.16.10.0/29 \ --region us-central1
Prüfen, ob die VPC-Netzwerke richtig konfiguriert sind
Rufen Sie in der Google Cloud Console den Tab Netzwerke im aktuellen Projekt auf der Seite VPC-Netzwerke auf.
Prüfen Sie in der Liste der VPC-Netzwerke, ob die beiden Netzwerke erstellt wurden:
vertex-networking-vpc
undonprem-vpc
.Klicken Sie auf den Tab Subnetze im aktuellen Projekt.
Prüfen Sie in der Liste der VPC-Subnetze, ob die Subnetze
workbench-subnet
undpsc-forwarding-rule-subnet
undonprem-vpc-subnet1
erstellt wurden.
on-prem-client
VM-Instanz erstellen
In diesem Abschnitt erstellen Sie eine VM-Instanz, die eine Clientanwendung darstellt, die Anfragen über HA VPN an den Vektorsuchindex-Endpunkt sendet.
Erstellen Sie in Cloud Shell die VM-Instanz
on-prem-client
:gcloud compute instances create on-prem-client \ --zone=us-central1-a \ --image-family=debian-11 \ --image-project=debian-cloud \ --subnet=onprem-vpc-subnet1 \ --scopes=https://www.googleapis.com/auth/cloud-platform \ --no-address \ --shielded-secure-boot \ --metadata startup-script="#! /bin/bash sudo apt-get update sudo apt-get install tcpdump dnsutils -y"
Hybridkonnektivität konfigurieren
In diesem Abschnitt erstellen Sie zwei HA VPN-Gateways, die miteinander verbunden sind. Eines befindet sich im VPC-Netzwerk vertex-networking-vpc
. Das andere befindet sich im VPC-Netzwerk onprem-vpc
.
Jedes Gateway enthält einen Cloud Router und ein VPN-Tunnelpaar.
HA VPN-Gateways erstellen
Erstellen Sie in Cloud Shell das HA VPN-Gateway für das VPC-Netzwerk
vertex-networking-vpc
:gcloud compute vpn-gateways create vertex-networking-vpn-gw1 \ --network vertex-networking-vpc \ --region us-central1
Erstellen Sie das HA VPN-Gateway für das VPC-Netzwerk
onprem-vpc
:gcloud compute vpn-gateways create onprem-vpn-gw1 \ --network onprem-vpc \ --region us-central1
Wechseln Sie in der Google Cloud Console auf der Seite VPN zum Tab Cloud VPN-Gateways.
Prüfen Sie, ob die beiden Gateways (
vertex-networking-vpn-gw1
undonprem-vpn-gw1
) erstellt wurden und ob jedes Gateway zwei Schnittstellen-IP-Adressen hat.
Cloud Router und Cloud NAT-Gateways erstellen
In jedem der beiden VPC-Netzwerke erstellen Sie zwei Cloud Router: einen allgemeinen und einen regionalen. In jedem der regionalen Cloud Router erstellen Sie ein Cloud NAT-Gateway. Cloud NAT-Gateways bieten ausgehende Verbindungen für Compute Engine-VM-Instanzen ohne externe IP-Adressen.
Erstellen Sie in Cloud Shell einen Cloud Router für das VPC-Netzwerk
vertex-networking-vpc
:gcloud compute routers create vertex-networking-vpc-router1 \ --region us-central1\ --network vertex-networking-vpc \ --asn 65001
Erstellen Sie einen Cloud Router für das VPC-Netzwerk
onprem-vpc
:gcloud compute routers create onprem-vpc-router1 \ --region us-central1\ --network onprem-vpc\ --asn 65002
Erstellen Sie einen regionalen Cloud Router für das VPC-Netzwerk
vertex-networking-vpc
:gcloud compute routers create cloud-router-us-central1-vertex-nat \ --network vertex-networking-vpc \ --region us-central1
Konfigurieren Sie ein Cloud NAT-Gateway auf dem regionalen Cloud Router:
gcloud compute routers nats create cloud-nat-us-central1 \ --router=cloud-router-us-central1-vertex-nat \ --auto-allocate-nat-external-ips \ --nat-all-subnet-ip-ranges \ --region us-central1
Erstellen Sie einen regionalen Cloud Router für das VPC-Netzwerk
onprem-vpc
:gcloud compute routers create cloud-router-us-central1-onprem-nat \ --network onprem-vpc \ --region us-central1
Konfigurieren Sie ein Cloud NAT-Gateway auf dem regionalen Cloud Router:
gcloud compute routers nats create cloud-nat-us-central1-on-prem \ --router=cloud-router-us-central1-onprem-nat \ --auto-allocate-nat-external-ips \ --nat-all-subnet-ip-ranges \ --region us-central1
Wechseln Sie in der Google Cloud Console zur Seite Cloud Routers.
Prüfen Sie in der Liste Cloud Router, ob die folgenden Router erstellt wurden:
cloud-router-us-central1-onprem-nat
cloud-router-us-central1-vertex-nat
onprem-vpc-router1
vertex-networking-vpc-router1
Möglicherweise müssen Sie den Browsertab der Google Cloud Console aktualisieren, um die neuen Werte zu sehen.
Klicken Sie in der Liste der Cloud Router auf
cloud-router-us-central1-vertex-nat
.Prüfen Sie auf der Seite Routerdetails, ob das Cloud NAT-Gateway
cloud-nat-us-central1
erstellt wurde.Klicken Sie auf den
Zurückpfeil, um zur Seite Cloud Router zurückzukehren.Klicken Sie in der Liste der Router auf
cloud-router-us-central1-onprem-nat
.Prüfen Sie auf der Seite Routerdetails, ob das Cloud NAT-Gateway
cloud-nat-us-central1-on-prem
erstellt wurde.
VPN-Tunnel erstellen
Erstellen Sie in der Cloud Shell im Netzwerk
vertex-networking-vpc
einen VPN-Tunnel mit dem Namenvertex-networking-vpc-tunnel0
:gcloud compute vpn-tunnels create vertex-networking-vpc-tunnel0 \ --peer-gcp-gateway onprem-vpn-gw1 \ --region us-central1 \ --ike-version 2 \ --shared-secret [ZzTLxKL8fmRykwNDfCvEFIjmlYLhMucH] \ --router vertex-networking-vpc-router1 \ --vpn-gateway vertex-networking-vpn-gw1 \ --interface 0
Erstellen Sie im Netzwerk
vertex-networking-vpc
einen VPN-Tunnel mit dem Namenvertex-networking-vpc-tunnel1
:gcloud compute vpn-tunnels create vertex-networking-vpc-tunnel1 \ --peer-gcp-gateway onprem-vpn-gw1 \ --region us-central1 \ --ike-version 2 \ --shared-secret [bcyPaboPl8fSkXRmvONGJzWTrc6tRqY5] \ --router vertex-networking-vpc-router1 \ --vpn-gateway vertex-networking-vpn-gw1 \ --interface 1
Erstellen Sie im Netzwerk
onprem-vpc
einen VPN-Tunnel mit dem Namenonprem-vpc-tunnel0
:gcloud compute vpn-tunnels create onprem-vpc-tunnel0 \ --peer-gcp-gateway vertex-networking-vpn-gw1 \ --region us-central1\ --ike-version 2 \ --shared-secret [ZzTLxKL8fmRykwNDfCvEFIjmlYLhMucH] \ --router onprem-vpc-router1 \ --vpn-gateway onprem-vpn-gw1 \ --interface 0
Erstellen Sie im Netzwerk
onprem-vpc
einen VPN-Tunnel mit dem Namenonprem-vpc-tunnel1
:gcloud compute vpn-tunnels create onprem-vpc-tunnel1 \ --peer-gcp-gateway vertex-networking-vpn-gw1 \ --region us-central1\ --ike-version 2 \ --shared-secret [bcyPaboPl8fSkXRmvONGJzWTrc6tRqY5] \ --router onprem-vpc-router1 \ --vpn-gateway onprem-vpn-gw1 \ --interface 1
Rufen Sie in der Google Cloud Console die Seite VPN auf.
Prüfen Sie in der Liste der VPN-Tunnel, ob die vier VPN-Tunnel erstellt wurden.
BGP-Sitzungen erstellen
Cloud Router verwendet das Border Gateway Protocol (BGP), um Routen zwischen Ihrem VPC-Netzwerk (in diesem Fall vertex-networking-vpc
) und Ihrem lokalen Netzwerk (dargestellt durch onprem-vpc
) auszutauschen. Auf dem Cloud Router konfigurieren Sie eine Schnittstelle und einen BGP-Peer für Ihren lokalen Router.
Die Konfigurationen für Schnittstelle und BGP-Peer bilden zusammen eine BGP-Sitzung.
In diesem Abschnitt erstellen Sie zwei BGP-Sitzungen für vertex-networking-vpc
und zwei für onprem-vpc
.
Nachdem Sie die Schnittstellen und BGP-Peers zwischen Ihren Routern konfiguriert haben, beginnen sie automatisch mit dem Austausch von Routen.
BGP-Sitzungen für vertex-networking-vpc
erstellen
Erstellen Sie in Cloud Shell im Netzwerk
vertex-networking-vpc
eine BGP-Schnittstelle fürvertex-networking-vpc-tunnel0
:gcloud compute routers add-interface vertex-networking-vpc-router1 \ --interface-name if-tunnel0-to-onprem \ --ip-address 169.254.0.1 \ --mask-length 30 \ --vpn-tunnel vertex-networking-vpc-tunnel0 \ --region us-central1
Erstellen Sie im Netzwerk
vertex-networking-vpc
einen BGP-Peer fürbgp-onprem-tunnel0
:gcloud compute routers add-bgp-peer vertex-networking-vpc-router1 \ --peer-name bgp-onprem-tunnel0 \ --interface if-tunnel0-to-onprem \ --peer-ip-address 169.254.0.2 \ --peer-asn 65002 \ --region us-central1
Erstellen Sie im Netzwerk
vertex-networking-vpc
eine BGP-Schnittstelle fürvertex-networking-vpc-tunnel1
:gcloud compute routers add-interface vertex-networking-vpc-router1 \ --interface-name if-tunnel1-to-onprem \ --ip-address 169.254.1.1 \ --mask-length 30 \ --vpn-tunnel vertex-networking-vpc-tunnel1 \ --region us-central1
Erstellen Sie im Netzwerk
vertex-networking-vpc
einen BGP-Peer fürbgp-onprem-tunnel1
:gcloud compute routers add-bgp-peer vertex-networking-vpc-router1 \ --peer-name bgp-onprem-tunnel1 \ --interface if-tunnel1-to-onprem \ --peer-ip-address 169.254.1.2 \ --peer-asn 65002 \ --region us-central1
BGP-Sitzungen für onprem-vpc
erstellen
Erstellen Sie im Netzwerk
onprem-vpc
eine BGP-Schnittstelle füronprem-vpc-tunnel0
:gcloud compute routers add-interface onprem-vpc-router1 \ --interface-name if-tunnel0-to-vertex-networking-vpc \ --ip-address 169.254.0.2 \ --mask-length 30 \ --vpn-tunnel onprem-vpc-tunnel0 \ --region us-central1
Erstellen Sie im Netzwerk
onprem-vpc
einen BGP-Peer fürbgp-vertex-networking-vpc-tunnel0
:gcloud compute routers add-bgp-peer onprem-vpc-router1 \ --peer-name bgp-vertex-networking-vpc-tunnel0 \ --interface if-tunnel0-to-vertex-networking-vpc \ --peer-ip-address 169.254.0.1 \ --peer-asn 65001 \ --region us-central1
Erstellen Sie im Netzwerk
onprem-vpc
eine BGP-Schnittstelle füronprem-vpc-tunnel1
:gcloud compute routers add-interface onprem-vpc-router1 \ --interface-name if-tunnel1-to-vertex-networking-vpc \ --ip-address 169.254.1.2 \ --mask-length 30 \ --vpn-tunnel onprem-vpc-tunnel1 \ --region us-central1
Erstellen Sie im Netzwerk
onprem-vpc
einen BGP-Peer fürbgp-vertex-networking-vpc-tunnel1
:gcloud compute routers add-bgp-peer onprem-vpc-router1 \ --peer-name bgp-vertex-networking-vpc-tunnel1 \ --interface if-tunnel1-to-vertex-networking-vpc \ --peer-ip-address 169.254.1.1 \ --peer-asn 65001 \ --region us-central1
BGP-Sitzungserstellung prüfen
Rufen Sie in der Google Cloud Console die Seite VPN auf.
Prüfen Sie in der Liste der VPN-Tunnel, ob sich der Wert in der Spalte BGP-Sitzungsstatus für jeden Tunnel von BGP-Sitzung konfigurieren in BGP eingerichtet gändert. Möglicherweise müssen Sie den Browsertab der Google Cloud Console aktualisieren, um die neuen Werte zu sehen.
Erkannte Routen vertex-networking-vpc
validieren
Rufen Sie in der Google Cloud Console die Seite VPC-Netzwerke auf.
Klicken Sie in der Liste der VPC-Netzwerke auf
vertex-networking-vpc
.Klicken Sie auf den Tab Routen.
Wählen Sie in der Liste Region die Option us-central1 (Iowa) aus und klicken Sie auf Ansehen.
Prüfen Sie in der Spalte Ziel-IP-Adressbereich, ob der IP-Bereich des Subnetzes
onprem-vpc-subnet1
(172.16.10.0/29
) zweimal angezeigt wird.
Erkannte Routen on-prem-vpc
validieren
Klicken Sie auf den
Zurückpfeil, um zur Seite VPC-Netzwerke zurückzukehren.Klicken Sie in der Liste der VPC-Netzwerke auf
on-prem-vpc
.Klicken Sie auf den Tab Routen.
Wählen Sie in der Liste Region die Option us-central1 (Iowa) aus und klicken Sie auf Ansehen.
Prüfen Sie in der Spalte Ziel-IP-Adressbereich, ob der IP-Bereich des Subnetzes
workbench-subnet
(172.16.20.0/28
) und der IP-Bereich des Subnetzespsc-forwarding-rule-subnet
(172.16.30.0/28
) jeweils zweimal angezeigt wird.
Vertex AI Workbench-Instanz erstellen
In diesem Abschnitt erstellen Sie ein nutzerverwaltetes Dienstkonto und dann eine Vertex AI Workbench-Instanz, die Ihr Dienstkonto für den Zugriff auf Google Cloud-Dienste und APIs verwendet.
Dienstkonto erstellen
In dieser Anleitung erstellen Sie ein nutzerverwaltetes Dienstkonto gemäß den Best Practices für Compute Engine und IAM.
Erstellen Sie in der Cloud Shell ein Dienstkonto mit dem Namen
workbench-sa
:gcloud iam service-accounts create workbench-sa \ --display-name="workbench-sa"
Weisen Sie dem Dienstkonto die IAM-Rolle Vertex AI User (
roles/aiplatform.user
) zu:gcloud projects add-iam-policy-binding $projectid \ --member="serviceAccount:workbench-sa@$projectid.iam.gserviceaccount.com" \ --role="roles/aiplatform.user"
Weisen Sie dem Dienstkonto die IAM-Rolle Storage Admin (
roles/storage.admin
) zu:gcloud projects add-iam-policy-binding $projectid \ --member="serviceAccount:workbench-sa@$projectid.iam.gserviceaccount.com" \ --role="roles/storage.admin"
Weisen Sie dem Dienstkonto die IAM-Rolle Service Usage Admin (
roles/serviceusage.serviceUsageAdmin
) zu:gcloud projects add-iam-policy-binding $projectid \ --member="serviceAccount:workbench-sa@$projectid.iam.gserviceaccount.com" \ --role="roles/serviceusage.serviceUsageAdmin"
Vertex AI Workbench-Instanz erstellen
Erstellen Sie eine Vertex AI Workbench-Instanz und geben Sie dabei das Dienstkonto workbench-sa
an:
gcloud workbench instances create workbench-tutorial \
--vm-image-project=deeplearning-platform-release \
--vm-image-family=common-cpu-notebooks \
--machine-type=n1-standard-4 \
--location=us-central1-a \
--subnet-region=us-central1 \
--shielded-secure-boot=SHIELDED_SECURE_BOOT \
--subnet=workbench-subnet \
--disable-public-ip \
--service-account-email=workbench-sa@$projectid.iam.gserviceaccount.com
Erstellen Sie einen Vektorsuchindex und stellen Sie ihn bereit.
Umgebung vorbereiten
Rufen Sie in der Google Cloud Console auf der Seite Vertex AI Workbench den Tab Instanzen auf.
Klicken Sie neben dem Namen der Vertex AI Workbench-Instanz (
workbench-tutorial
) auf JupyterLab öffnen.Ihre Vertex AI Workbench-Instanz öffnet JupyterLab.
Wählen Sie File > New > Notebook aus.
Wählen Sie im Menü Kernel auswählen die Option Python 3 (lokal) aus und klicken Sie auf Auswählen.
Wenn Ihr neues Notebook geöffnet wird, wird eine Standard-Codezelle angezeigt, in die Sie Code eingeben können. Sie sieht so aus:
[ ]:
, gefolgt von einem Textfeld. In das Textfeld fügen Sie den Code ein.Fügen Sie den folgenden Code in die Zelle ein und klicken Sie auf
Ausgewählte Zellen ausführen und fortfahren, um das Vertex AI SDK für Python zu installieren:!pip install --upgrade --user google-cloud-aiplatform google-cloud-storage
Fügen Sie in diesem und jedem der folgenden Schritte eine neue Codezelle (wenn nötig) hinzu, indem Sie auf
Zelle unten einfügen klicken, den Code in die Zelle einfügen und dann auf Ausgewählte Zellen ausführen und fortfahren klicken.Um die neu installierten Pakete in dieser Jupyter-Laufzeit zu verwenden, müssen Sie die Laufzeit neu starten:
# Restart kernel after installs so that your environment can access the new packages import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True)
Legen Sie die folgenden Umgebungsvariablen fest und ersetzen Sie PROJECT_ID durch Ihre Projekt-ID.
# set project ID and location PROJECT_ID = "PROJECT_ID" LOCATION = "us-central1" # generate a unique id for this session from datetime import datetime UID = datetime.now().strftime("%m%d%H%M")
APIs aktivieren
Führen Sie in Ihrem Jupyterlab-Notebook den folgenden Befehl aus, um APIs für Compute Engine, Vertex AI und Cloud Storage im Notebook zu aktivieren:
! gcloud services enable compute.googleapis.com aiplatform.googleapis.com storage.googleapis.com \
--project {PROJECT_ID}
Beispieldaten in einem Cloud Storage-Bucket vorbereiten
In dieser Anleitung verwenden wir dasselbe TheLook-Dataset, das in der Kurzanleitung zur Vektorsuche verwendet wird. Weitere Informationen zu diesem Dataset finden Sie auf der Dokumentationsseite der Kurzanleitung.
In diesem Abschnitt erstellen Sie einen Cloud Storage-Bucket und platzieren die Einbettungsdatei des Datasets darin. Sie verwenden diese Datei in einem späteren Schritt, um einen Index zu erstellen.
Erstellen Sie in Ihrem Jupyterlab-Notebook einen Cloud Storage-Bucket:
BUCKET_URI = f"gs://{PROJECT_ID}-vs-quickstart-{UID}" ! gcloud storage buckets create $BUCKET_URI --location=$LOCATION --project=$PROJECT_ID
Kopieren Sie die Beispieldatei in Ihren Cloud Storage-Bucket.
! gcloud storage cp "gs://github-repo/data/vs-quickstart/product-embs.json" $BUCKET_URI
Wenn Sie die Vektorsuche zum Ausführen von Abfragen verwenden möchten, müssen Sie die Einbettungsdatei auch in ein lokales Verzeichnis kopieren:
! gcloud storage cp "gs://github-repo/data/vs-quickstart/product-embs.json" . # for query tests
Vektorsuchindex erstellen
Laden Sie die Einbettungen in Ihr Jupyterlab-Notebook in die Vektorsuche:
# init the aiplatform package from google.cloud import aiplatform aiplatform.init(project=PROJECT_ID, location=LOCATION)
Erstellen Sie einen MatchingEngineIndex mit seiner Funktion
create_tree_ah_index
(Matching Engine ist der frühere Name der Vektorsuche):# create Index my_index = aiplatform.MatchingEngineIndex.create_tree_ah_index( display_name = f"vs-quickstart-index-{UID}", contents_delta_uri = BUCKET_URI, dimensions = 768, approximate_neighbors_count = 10, )
Mit der Methode
MatchingEngineIndex.create_tree_ah_index()
wird ein Index erstellt. In dieser Anleitung dauert diese Aufgabe etwa 5 bis 10 Minuten.Rufen Sie in der Google Cloud Console auf der Seite Vektorsuche den Tab Indexe auf.
Prüfen Sie, ob ein Index vorhanden ist, dessen Name mit
"vs-quickstart-index-"
beginnt und den richtigen Zeitstempel enthält.Notieren Sie sich die Index-ID. Sie benötigen diese ID, wenn Sie den Index in einem späteren Schritt bereitstellen.
Indexendpunkt erstellen
Führen Sie in der Cloud Shell die folgenden Befehle aus und ersetzen Sie dabei PROJECT_ID durch Ihre Projekt-ID:
projectid=PROJECT_ID gcloud config set project ${projectid} SERVICE_PROJECT=${projectid} REGION=us-central1 VERTEX_ENDPOINT=$REGION-aiplatform.googleapis.com DISPLAY_NAME=vector-search
Erstellen Sie den Indexendpunkt:
curl -H "Content-Type: application/json" \ -H "Authorization: Bearer `gcloud auth print-access-token`" \ https://$VERTEX_ENDPOINT/v1/projects/$SERVICE_PROJECT/locations/$REGION/indexEndpoints \ -d '{displayName: "'$DISPLAY_NAME'", privateServiceConnectConfig: { enablePrivateServiceConnect: true, projectAllowlist: ["'$SERVICE_PROJECT'"] }}'
Prüfen Sie, ob der Indexendpunkt erstellt wurde:
gcloud ai index-endpoints list --region=us-central1
Die Ausgabe sieht etwa so aus wie im folgenden Beispiel, wobei die Indexendpunkt-ID
8151506529447575552
lautet:Using endpoint [https://us-central1-aiplatform.googleapis.com/] --- createTime: '2023-10-10T23:55:20.526145Z' displayName: vector-search encryptionSpec: {} etag: AMEw9yN2qytNiwT73uwYpz_7N_b2-O8D1AuNoDb5QjFmkU4ye5Gzk2oQlMZBR1XeoQ11 name: projects/725264228516/locations/us-central1/indexEndpoints/8151506529447575552 privateServiceConnectConfig: enablePrivateServiceConnect: true projectAllowlist: - vertex-genai-400103 - vertex-genai-400103 updateTime: '2023-10-10T23:55:21.951394Z'
Notieren Sie sich die Indexendpunkt-ID. Sie benötigen diese ID, wenn Sie den Index in einem späteren Schritt bereitstellen.
Index auf dem Endpunkt bereitstellen
Führen Sie in der Cloud Shell den folgenden Befehl aus, um den Index auf dem Endpunkt bereitzustellen:
gcloud ai index-endpoints deploy-index INDEX_ENDPOINT_ID \
--deployed-index-id=vector_one \
--display-name=vector-search \
--index=INDEX \
--project=$projectid \
--region=us-central1
Ersetzen Sie die folgenden Werte:
- INDEX_ENDPOINT_ID: die Index-Endpunkt-ID für den Private Service Connect-Indexendpunkt, den Sie erstellt haben
- INDEX: die ID des Index, den Sie bereitstellen
Die Ausgabe ähnelt dem folgenden Beispiel, in dem die Indexendpunkt-ID 8151506529447575552
lautet:
Using endpoint [https://us-central1-aiplatform.googleapis.com/]
The deploy index operation [projects/725264228516/locations/us-central1/indexEndpoints/8151506529447575552/operations/6271807495283408896] was submitted successfully.
Der Bereitstellungsvorgang dauert etwa 10 bis 15 Minuten. Wenn Sie den Index bereitstellen, wird ein Dienstanhang generiert.
Prüfen, ob der Index auf dem Indexendpunkt bereitgestellt wurde
Rufen Sie in der Google Cloud Console auf der Seite Vektorsuche den Tab Indexendpunkte auf.
Prüfen Sie, ob der Indexendpunkt
vector-search
einen bereitgestellten Index hat, der auchvector-search
genannt wird.Wenn neben dem Namen des Indexendpunkts ein rotierender blauer Kreis angezeigt wird, wird der Index noch bereitgestellt.
URI des Dienstanhangs für den Indexendpunkt abrufen
Nachdem der Index vollständig bereitgestellt wurde, können Sie den URI des Dienstanhangs abrufen.
Führen Sie in der Cloud Shell den folgenden Befehl aus, um den URI des Dienstanhangs abzurufen:
gcloud ai index-endpoints list --region=us-central1 | grep -i serviceAttachment:
Im folgenden Beispiel für eine Ausgabe lautet der URI des Dienstanhangs projects/je84d1de50cd8bddb-tp/regions/us-central1/serviceAttachments/sa-gkedpm-527af280e65971fd786aaf6163e798
.
Using endpoint [https://us-central1-aiplatform.googleapis.com/]
serviceAttachment: projects/je84d1de50cd8bddb-tp/regions/us-central1/serviceAttachments/sa-gkedpm-527af280e65971fd786aaf6163e798
Notieren Sie sich den URI serviceAttachment
, der mit projects
beginnt, z. B. projects/je84d1de50cd8bddb-tp/regions/us-central1/serviceAttachments/sa-gkedpm-527af280e65971fd786aaf6163e798
.
Sie benötigen sie im nächsten Schritt, wenn Sie eine Weiterleitungsregel erstellen.
Erstellen Sie eine Weiterleitungsregel.
Reservieren Sie in der Cloud Shell eine IP-Adresse für die Weiterleitungsregel, die zum Abfragen des Vektorsuchindex verwendet werden soll:
gcloud compute addresses create vector-search-forwarding-rule \ --region=us-central1 \ --subnet=psc-forwarding-rule-subnet
Suchen Sie die reservierte IP-Adresse:
gcloud compute addresses list --filter="name=vector-search-forwarding-rule"
Erstellen Sie eine Weiterleitungsregel, um den Endpunkt mit dem Dienstanhang zu verbinden. Ersetzen Sie dabei SERVICE_ATTACHMENT_URI durch den URI
serviceAttachment
.gcloud compute forwarding-rules create vector-search-forwarding-rule \ --region=us-central1 \ --network=vertex-networking-vpc \ --address=vector-search-forwarding-rule \ --target-service-attachment=SERVICE_ATTACHMENT_URI
Im Folgenden finden Sie ein Verwendungsbeispiel für diesen Befehl:
gcloud compute forwarding-rules create vector-search-forwarding-rule \ --region=us-central1 \ --network=vertex-networking-vpc \ --address=vector-search-forwarding-rule \ --target-service-attachment=projects/je84d1de50cd8bddb-tp/regions/us-central1/serviceAttachments/sa-gkedpm-527af280e65971fd786aaf6163e798
Rufen Sie in der Google Cloud Console auf der Seite Private Service Connect den Tab Verbundene Endpunkte auf.
Prüfen Sie, ob der Status von
vector-search-forwarding-rule
Accepted
lautet.Notieren Sie sich die IP-Adresse der Private Service Connect-Weiterleitungsregel. In einem späteren Schritt verwenden Sie diesen Endpunkt, um die Kommunikation mit dem bereitgestellten Vektorsuchindex herzustellen.
Bereitgestellten Index abfragen
Nachdem Sie eine Private Service Connect-Weiterleitungsregel eingerichtet haben, die mit Ihrem Vektorsuchindex-Endpunkt verbunden ist, können Sie den bereitgestellten Index abfragen, indem Sie die Abfragen von der VM-Instanz on-prem-client
an die Weiterleitung-Regel senden.
Damit Identity-Aware Proxy (IAP) eine Verbindung zu Ihren VM-Instanzen herstellen kann, erstellen Sie eine Firewallregel, die:
- für alle VM-Instanzen gilt, die über IAP zugänglich sein sollen.
- TCP-Traffic über Port 22 aus dem IP-Bereich
35.235.240.0/20
zulässt. Dieser Bereich enthält alle IP-Adressen, die IAP für die TCP-Weiterleitung verwendet.
Nachdem Sie die Firewall erstellt haben, installieren Sie den gRPC-Client. In einem späteren Schritt verwenden Sie den gRPC-Client, um Abfragen von der VM-Instanz on-prem-client
zu senden.
Firewallregel erstellen und gRPC installieren
Führen Sie in der Cloud Shell die folgenden Befehle aus und ersetzen Sie dabei PROJECT_ID durch Ihre Projekt-ID:
projectid=PROJECT_ID gcloud config set project ${projectid}
Erstellen Sie eine IAP-Firewallregel mit dem Namen
ssh-iap-vpc
:gcloud compute firewall-rules create ssh-iap-vpc \ --network onprem-vpc \ --allow tcp:22 \ --source-ranges=35.235.240.0/20
Melden Sie sich bei der VM-Instanz
on-prem-client
an:gcloud compute ssh on-prem-client \ --project=$projectid \ --zone=us-central1-a \ --tunnel-through-iap
Installieren Sie auf der VM-Instanz
on-prem-client
dengRPC
-Client:sudo apt-get install git -y git clone https://github.com/grpc/grpc.git sudo apt-get install build-essential autoconf libtool pkg-config -y sudo apt-get install cmake -y cd grpc/ git submodule update --init mkdir -p cmake/build cd cmake/build cmake -DgRPC_BUILD_TESTS=ON ../.. make grpc_cli
Die Installation dauert etwa 30 Minuten.
ID für ein vorhandenes Indexelement abrufen
Rufen Sie in der Google Cloud Console auf der Seite Vertex AI Workbench den Tab Instanzen auf.
Klicken Sie neben dem Namen der Vertex AI Workbench-Instanz auf JupyterLab öffnen.
Ihre Vertex AI Workbench-Instanz öffnet JupyterLab.
Wählen Sie Datei > Neu > Terminal aus.
Sehen Sie sich im JupyterLab-Terminal (nicht in Cloud Shell) den letzten Eintrag im Index an:
tail -1 product-embs.json
Suchen Sie im Element nach dem ersten Schlüssel/Wert-Paar, das die ID-Nummer des Elements enthält, wie im folgenden Beispiel:
"id":"27452"
Notieren Sie sich diese ID-Nummer. Sie benötigen sie, um im nächsten Abschnitt eine Abfrage auszuführen.
Abfrage für die Vektorsuche ausführen
Fragen Sie in der VM-Instanz on-prem-client
den bereitgestellten Index ab:
./grpc_cli call FORWARDING_RULE_IP:10000 google.cloud.aiplatform.container.v1.MatchService.Match "deployed_index_id:'"vector_one"',embedding_id: '"ITEM_ID"'"
Ersetzen Sie die folgenden Werte:
- FORWARDING_RULE_IP: IP-Adresse der Private Service Connect-Weiterleitungsregel, die Sie im vorherigen Abschnitt erstellt haben
- ITEM_ID: die ID-Nummer des Elements, die Sie im vorherigen Abschnitt gespeichert haben
Die Ausgabe sieht in etwa so aus:
user@on-prem-client:~/grpc/cmake/build$ ./grpc_cli call 172.16.30.2:10000 google.cloud.aiplatform.container.v1.MatchService.Match "deployed_index_id:'"vector_one"',embedding_id: '"20020916"'"
connecting to 172.16.30.2:10000
neighbor {
id: "16136217"
distance: 0.99999558925628662
}
neighbor {
id: "2196405"
distance: 0.82817935943603516
}
neighbor {
id: "3796353"
distance: 0.82687419652938843
}
neighbor {
id: "815154"
distance: 0.8179466724395752
}
neighbor {
id: "16262338"
distance: 0.816785454750061
}
neighbor {
id: "31290454"
distance: 0.81560027599334717
}
neighbor {
id: "4012943"
distance: 0.80958610773086548
}
neighbor {
id: "39738359"
distance: 0.8020891547203064
}
neighbor {
id: "7691697"
distance: 0.80035769939422607
}
neighbor {
id: "6398888"
distance: 0.79880392551422119
}
Rpc succeeded with OK status
Bereinigen
Damit Ihrem Google Cloud-Konto die in dieser Anleitung verwendeten Ressourcen nicht in Rechnung gestellt werden, löschen Sie entweder das Projekt, das die Ressourcen enthält, oder Sie behalten das Projekt und löschen die einzelnen Ressourcen.
Damit Ihrem Google Cloud-Konto die in dieser Anleitung verwendeten Ressourcen nicht in Rechnung gestellt werden, löschen Sie entweder das Projekt, das die Ressourcen enthält, oder behalten Sie das Projekt und löschen Sie die einzelnen Ressourcen.
Sie können die einzelnen Ressourcen in der Google Cloud Console so löschen:
Heben Sie die Bereitstellung des Vektorsuchindex auf und löschen Sie ihn:
Rufen Sie in der Google Cloud Console auf der Seite Vektorsuche den Tab Indexe auf.
Suchen Sie den Index, dessen Name mit
"vs-quickstart-index-"
beginnt und den richtigen Zeitstempel enthält.Klicken Sie auf den Indexnamen.
Klicken Sie auf der Seite Indexinformationen neben dem Indexnamen in der Liste Bereitgestellte Indexe auf
Aktionen und klicken Sie dann auf Bereitstellung aufheben.Das Aufheben der Bereitstellung des Index dauert einige Minuten. Wenn neben dem Indexnamen ein rotierender blauer Kreis angezeigt wird oder wenn der Indexstatus
Undeploying
angegeben wird, ist die Bereitstellung des Index noch nicht abgeschlossen. Möglicherweise müssen Sie den Browsertab der Google Cloud Console aktualisieren, um zu sehen, dass der Index nicht mehr bereitgestellt ist.Klicken Sie auf den
Zurückpfeil, um zum Tab Indexe zurückzukehren.Klicken Sie neben dem Indexnamen in der Indexliste auf
Aktionen und dann auf Löschen, um den Index zu löschen.
Löschen Sie den Indexendpunkt so:
Rufen Sie in der Google Cloud Console auf der Seite Vektorsuche den Tab Indexendpunkte auf.
Klicken Sie neben dem Namen des Endpunkts in der Liste der Indexendpunkte auf
Aktionen und dann auf Löschen, um den Indexendpunkt zu löschen.
Löschen Sie die Vertex AI Workbench-Instanz so:
Rufen Sie in der Google Cloud Console im Abschnitt Vertex AI auf der Seite Workbench den Tab Instanzen auf.
Wählen Sie die Vertex AI Workbench-Instanz
workbench-tutorial
aus und klicken Sie auf Löschen.
Löschen Sie die Compute Engine-VM-Instanz so:
Rufen Sie in der Google Cloud Console die Seite Compute Engine auf.
Wählen Sie die VM-Instanz
on-prem-client
aus und klicken Sie auf Löschen.
Löschen Sie die VPN-Tunnel so:
Rufen Sie in der Google Cloud Console die Seite VPN auf.
Klicken Sie auf der Seite VPN auf den Tab Cloud VPN-Tunnel.
Wählen Sie in der Liste der VPN-Tunnel die vier VPN-Tunnel aus, die Sie in dieser Anleitung erstellt haben, und klicken Sie auf
Löschen.
Löschen Sie die HA VPN-Gateways so:
Klicken Sie auf der Seite VPN auf den Tab Cloud VPN-Gateways.
Klicken Sie in der Liste der VPN-Gateways auf
onprem-vpn-gw1
.Klicken Sie auf der Seite Details zum Cloud VPN-Gateway auf
VPN-Gateway löschen.Klicken Sie bei Bedarf auf den
Zurückpfeil, um zur Liste der VPN-Gateways zurückzukehren, und klicken Sie dann aufvertex-networking-vpn-gw1
.Klicken Sie auf der Seite Details zum Cloud VPN-Gateway auf
VPN-Gateway löschen.
Löschen Sie die Cloud Router so:
Wechseln Sie zur Seite Cloud Router.
Wählen Sie in der Liste der Cloud Router die vier Router aus, die Sie in dieser Anleitung erstellt haben.
Klicken Sie zum Löschen der Router auf
Löschen.Dadurch werden auch die beiden Cloud NAT-Gateways gelöscht, die mit den Cloud Routern verbunden sind.
Löschen Sie so die Weiterleitungsregel
vector-search-forwarding-rule
für das VPC-Netzwerkvertex-networking-vpc
:Wechseln Sie auf der Seite Load Balancing zum Tab Front-Ends.
Klicken Sie in der Liste der Weiterleitungsregeln auf
vector-search-forwarding-rule
.Klicken Sie auf der Seite Details zur Weiterleitungsregel auf
Löschen.
Löschen Sie die VPC-Netzwerke so:
Rufen Sie die Seite VPC-Netzwerke auf.
Klicken Sie in der Liste der VPC-Netzwerke auf
onprem-vpc
.Klicken Sie auf der Seite VPC-Netzwerkdetails auf
VPC-Netzwerk löschen.Durch das Löschen des jeweiligen Netzwerks werden auch die zugehörigen Subnetzwerke, Routen und Firewallregeln gelöscht.
Kehren Sie zur Liste der VPC-Netzwerke zurück und klicken Sie auf
vertex-networking-vpc
.Klicken Sie auf der Seite VPC-Netzwerkdetails auf
VPC-Netzwerk löschen.
Löschen Sie den Storage-Bucket so:
Wechseln Sie in der Google Cloud Console zum Cloud Storage-Browser.
Wählen Sie Ihren Storage-Bucket aus und klicken Sie auf
Löschen.
Löschen Sie das Dienstkonto
workbench-sa
so:Rufen Sie die Seite Dienstkonten auf.
Wählen Sie das Dienstkonto
workbench-sa
aus und klicken Sie auf Löschen.
Nächste Schritte
- Netzwerkoptionen für den Zugriff auf Vertex AI-Endpunkte und -Dienste
- Erhalten Sie weitere Informationen dazu, wie Private Service Connect funktioniert und warum es erhebliche Leistungsvorteile bietet.
- Erhalten Sie weitere Informationen zur Verwendung von VPC Service Controls zur Erstellung sicherer Perimeter, um den Zugriff auf Vertex AI und andere Google APIs auf dem Vektorsuchindex-Endpunkt über das öffentliche Internet zuzulassen oder zu verweigern.
- Referenzarchitekturen, Diagramme und Best Practices zu Google Cloud kennenlernen. Weitere Informationen zu Cloud Architecture Center