Train an image object detection model

This page shows you how to train an AutoML object detection model from an image dataset using either the Google Cloud console or the Vertex AI API.

Train an AutoML model

Google Cloud console

  1. In the Google Cloud console, in the Vertex AI section, go to the Datasets page.

    Go to the Datasets page

  2. Click the name of the dataset you want to use to train your model to open its details page.

  3. Click Train new model.

  4. For the training method, select AutoML.

  5. In the Choose where to use the model section, choose the model host location: Cloud, Edge, or Vertex AI Vision.

  6. Click Continue.

  7. Enter a name for the model.

  8. If you want manually set how your training data is split, expand Advanced options and select a data split option. Learn more.

  9. Click Start Training.

    Model training can take many hours, depending on the size and complexity of your data and your training budget, if you specified one. You can close this tab and return to it later. You will receive an email when your model has completed training.


Select the tab below for your language or environment:


Before using any of the request data, make the following replacements:

  • LOCATION: Region where dataset is located and Model is created. For example, us-central1.
  • PROJECT: Your project ID.
  • TRAININGPIPELINE_DISPLAYNAME: Required. A display name for the trainingPipeline.
  • DATASET_ID: The ID number for the dataset to use for training.
  • fractionSplit: Optional. One of several possible ML use split options for your data. For fractionSplit, values must sum to 1. For example:
    • {"trainingFraction": "0.7","validationFraction": "0.15","testFraction": "0.15"}
  • MODEL_DISPLAYNAME*: A display name for the model uploaded (created) by the TrainingPipeline.
  • MODEL_DESCRIPTION*: A description for the model.
  • modelToUpload.labels*: Any set of key-value pairs to organize your models. For example:
    • "env": "prod"
    • "tier": "backend"
  • MODELTYPE: The type of Cloud-hosted model to train. The options are:
    • CLOUD_1 - A model best tailored to be used within Google Cloud, and which cannot be exported. Compared to the CLOUD_HIGH_ACCURACY_1 and CLOUD_LOW_LATENCY_1 models above, it is expected to have higher prediction quality and lower latency.
    • CLOUD_HIGH_ACCURACY_1 - A model best tailored to be used within Google Cloud, and which cannot be exported. This model is expected to have a higher latency, but should also have a higher prediction quality than other cloud models.
    • CLOUD_LOW_LATENCY_1 - A model best tailored to be used within Google Cloud, and which cannot be exported. This model is expected to have a low latency, but may have lower prediction quality than other cloud models.
    Other model type options can be found in the reference documentation.
  • NODE_HOUR_BUDGET: The actual training cost will be equal or less than this value. For Cloud models the budget must be: 20,000 - 900,000 milli node hours (inclusive). The default value is 216,000 which represents one day in wall time, assuming 9 nodes are used.
  • PROJECT_NUMBER: Project number for your project

HTTP method and URL:


Request JSON body:

  "inputDataConfig": {
    "datasetId": "DATASET_ID",
    "fractionSplit": {
      "trainingFraction": "DECIMAL",
      "validationFraction": "DECIMAL",
      "testFraction": "DECIMAL"
  "modelToUpload": {
    "displayName": "MODEL_DISPLAYNAME",
    "description": "MODEL_DESCRIPTION",
    "labels": {
      "KEY": "VALUE"
  "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_image_object_detection_1.0.0.yaml",
  "trainingTaskInputs": {
    "modelType": ["MODELTYPE"],
    "budgetMilliNodeHours": NODE_HOUR_BUDGET

To send your request, choose one of these options:


Save the request body in a file named request.json, and execute the following command:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \


Save the request body in a file named request.json, and execute the following command:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "" | Select-Object -Expand Content

The response contains information about specifications as well as the TRAININGPIPELINE_ID.


Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Java API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.


public class CreateTrainingPipelineImageObjectDetectionSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String trainingPipelineDisplayName = "YOUR_TRAINING_PIPELINE_DISPLAY_NAME";
    String project = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    String modelDisplayName = "YOUR_MODEL_DISPLAY_NAME";
        project, trainingPipelineDisplayName, datasetId, modelDisplayName);

  static void createTrainingPipelineImageObjectDetectionSample(
      String project, String trainingPipelineDisplayName, String datasetId, String modelDisplayName)
      throws IOException {
    PipelineServiceSettings pipelineServiceSettings =

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PipelineServiceClient pipelineServiceClient =
        PipelineServiceClient.create(pipelineServiceSettings)) {
      String location = "us-central1";
      String trainingTaskDefinition =
              + "automl_image_object_detection_1.0.0.yaml";
      LocationName locationName = LocationName.of(project, location);

      AutoMlImageObjectDetectionInputs autoMlImageObjectDetectionInputs =

      InputDataConfig trainingInputDataConfig =
      Model model = Model.newBuilder().setDisplayName(modelDisplayName).build();
      TrainingPipeline trainingPipeline =

      TrainingPipeline trainingPipelineResponse =
          pipelineServiceClient.createTrainingPipeline(locationName, trainingPipeline);

      System.out.println("Create Training Pipeline Image Object Detection Response");
      System.out.format("Name: %s\n", trainingPipelineResponse.getName());
      System.out.format("Display Name: %s\n", trainingPipelineResponse.getDisplayName());

          "Training Task Definition %s\n", trainingPipelineResponse.getTrainingTaskDefinition());
          "Training Task Inputs: %s\n", trainingPipelineResponse.getTrainingTaskInputs());
          "Training Task Metadata: %s\n", trainingPipelineResponse.getTrainingTaskMetadata());
      System.out.format("State: %s\n", trainingPipelineResponse.getState());

      System.out.format("Create Time: %s\n", trainingPipelineResponse.getCreateTime());
      System.out.format("StartTime %s\n", trainingPipelineResponse.getStartTime());
      System.out.format("End Time: %s\n", trainingPipelineResponse.getEndTime());
      System.out.format("Update Time: %s\n", trainingPipelineResponse.getUpdateTime());
      System.out.format("Labels: %s\n", trainingPipelineResponse.getLabelsMap());

      InputDataConfig inputDataConfig = trainingPipelineResponse.getInputDataConfig();
      System.out.println("Input Data Config");
      System.out.format("Dataset Id: %s", inputDataConfig.getDatasetId());
      System.out.format("Annotations Filter: %s\n", inputDataConfig.getAnnotationsFilter());

      FractionSplit fractionSplit = inputDataConfig.getFractionSplit();
      System.out.println("Fraction Split");
      System.out.format("Training Fraction: %s\n", fractionSplit.getTrainingFraction());
      System.out.format("Validation Fraction: %s\n", fractionSplit.getValidationFraction());
      System.out.format("Test Fraction: %s\n", fractionSplit.getTestFraction());

      FilterSplit filterSplit = inputDataConfig.getFilterSplit();
      System.out.println("Filter Split");
      System.out.format("Training Filter: %s\n", filterSplit.getTrainingFilter());
      System.out.format("Validation Filter: %s\n", filterSplit.getValidationFilter());
      System.out.format("Test Filter: %s\n", filterSplit.getTestFilter());

      PredefinedSplit predefinedSplit = inputDataConfig.getPredefinedSplit();
      System.out.println("Predefined Split");
      System.out.format("Key: %s\n", predefinedSplit.getKey());

      TimestampSplit timestampSplit = inputDataConfig.getTimestampSplit();
      System.out.println("Timestamp Split");
      System.out.format("Training Fraction: %s\n", timestampSplit.getTrainingFraction());
      System.out.format("Validation Fraction: %s\n", timestampSplit.getValidationFraction());
      System.out.format("Test Fraction: %s\n", timestampSplit.getTestFraction());
      System.out.format("Key: %s\n", timestampSplit.getKey());

      Model modelResponse = trainingPipelineResponse.getModelToUpload();
      System.out.println("Model To Upload");
      System.out.format("Name: %s\n", modelResponse.getName());
      System.out.format("Display Name: %s\n", modelResponse.getDisplayName());
      System.out.format("Description: %s\n", modelResponse.getDescription());

      System.out.format("Metadata Schema Uri: %s\n", modelResponse.getMetadataSchemaUri());
      System.out.format("Metadata: %s\n", modelResponse.getMetadata());
      System.out.format("Training Pipeline: %s\n", modelResponse.getTrainingPipeline());
      System.out.format("Artifact Uri: %s\n", modelResponse.getArtifactUri());

          "Supported Deployment Resources Types: %s\n",
          "Supported Input Storage Formats: %s\n",
          "Supported Output Storage Formats: %s\n",

      System.out.format("Create Time: %s\n", modelResponse.getCreateTime());
      System.out.format("Update Time: %s\n", modelResponse.getUpdateTime());
      System.out.format("Labels: %sn\n", modelResponse.getLabelsMap());

      PredictSchemata predictSchemata = modelResponse.getPredictSchemata();
      System.out.println("Predict Schemata");
      System.out.format("Instance Schema Uri: %s\n", predictSchemata.getInstanceSchemaUri());
      System.out.format("Parameters Schema Uri: %s\n", predictSchemata.getParametersSchemaUri());
      System.out.format("Prediction Schema Uri: %s\n", predictSchemata.getPredictionSchemaUri());

      for (ExportFormat exportFormat : modelResponse.getSupportedExportFormatsList()) {
        System.out.println("Supported Export Format");
        System.out.format("Id: %s\n", exportFormat.getId());

      ModelContainerSpec modelContainerSpec = modelResponse.getContainerSpec();
      System.out.println("Container Spec");
      System.out.format("Image Uri: %s\n", modelContainerSpec.getImageUri());
      System.out.format("Command: %s\n", modelContainerSpec.getCommandList());
      System.out.format("Args: %s\n", modelContainerSpec.getArgsList());
      System.out.format("Predict Route: %s\n", modelContainerSpec.getPredictRoute());
      System.out.format("Health Route: %s\n", modelContainerSpec.getHealthRoute());

      for (EnvVar envVar : modelContainerSpec.getEnvList()) {
        System.out.format("Name: %s\n", envVar.getName());
        System.out.format("Value: %s\n", envVar.getValue());

      for (Port port : modelContainerSpec.getPortsList()) {
        System.out.format("Container Port: %s\n", port.getContainerPort());

      for (DeployedModelRef deployedModelRef : modelResponse.getDeployedModelsList()) {
        System.out.println("Deployed Model");
        System.out.format("Endpoint: %s\n", deployedModelRef.getEndpoint());
        System.out.format("Deployed Model Id: %s\n", deployedModelRef.getDeployedModelId());

      Status status = trainingPipelineResponse.getError();
      System.out.format("Code: %s\n", status.getCode());
      System.out.format("Message: %s\n", status.getMessage());


Before trying this sample, follow the Node.js setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Node.js API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)

// const datasetId = 'YOUR_DATASET_ID';
// const modelDisplayName = 'YOUR_MODEL_DISPLAY_NAME';
// const trainingPipelineDisplayName = 'YOUR_TRAINING_PIPELINE_DISPLAY_NAME';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

const aiplatform = require('@google-cloud/aiplatform');
const {definition} =;
const ModelType = definition.AutoMlImageObjectDetectionInputs.ModelType;

// Imports the Google Cloud Pipeline Service Client library
const {PipelineServiceClient} = aiplatform.v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: '',

// Instantiates a client
const pipelineServiceClient = new PipelineServiceClient(clientOptions);

async function createTrainingPipelineImageObjectDetection() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;

  const trainingTaskInputsObj =
    new definition.AutoMlImageObjectDetectionInputs({
      disableEarlyStopping: false,
      modelType: ModelType.CLOUD_1,
      budgetMilliNodeHours: 20000,

  const trainingTaskInputs = trainingTaskInputsObj.toValue();
  const modelToUpload = {displayName: modelDisplayName};
  const inputDataConfig = {datasetId: datasetId};
  const trainingPipeline = {
    displayName: trainingPipelineDisplayName,
  const request = {

  // Create training pipeline request
  const [response] =
    await pipelineServiceClient.createTrainingPipeline(request);

  console.log('Create training pipeline image object detection response');
  console.log(`Name : ${}`);
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));

Vertex AI SDK for Python

To learn how to install the Vertex AI SDK for Python, see Install the Vertex AI SDK for Python. For more information, see the Vertex AI SDK for Python API reference documentation.