Stay organized with collections Save and categorize content based on your preferences.

Introduction to Vertex AI Workbench

Vertex AI Workbench is a Jupyter notebook-based development environment for the entire data science workflow. You can interact with Vertex AI and other Google Cloud services from within a Vertex AI Workbench instance's Jupyter notebook.

Vertex AI Workbench integrations and features can make it easier to access your data, process data faster, schedule notebook runs, and more.

For example, Vertex AI Workbench lets you:

  • Access and explore your data from within a Jupyter notebook by using BigQuery and Cloud Storage integrations.
  • Automate recurring updates to your model by using scheduled executions of your notebook's code that run on Vertex AI.
  • Process data quickly by running a notebook on a Dataproc cluster.
  • Run a notebook as a step in a pipeline by using Vertex AI Pipelines.

Vertex AI Workbench offers a managed notebooks option with built-in integrations that help you to set up an end-to-end notebook-based production environment. For users who need full control over their environment, Vertex AI Workbench provides a user-managed notebooks option.

Both notebook options are prepackaged with JupyterLab and have a preinstalled suite of deep learning packages, including support for the TensorFlow and PyTorch frameworks. You can use CPU-only or GPU-enabled instances. Vertex AI Workbench notebook instances also integrate with GitHub so that you can sync your notebook with a GitHub repository.

Your Vertex AI Workbench notebook instances are protected by Google Cloud authentication and authorization.

What's next