Train and use your own models

Stay organized with collections Save and categorize content based on your preferences.
This page provides an overview of the workflow for training and using your own models on Vertex AI. Vertex AI offers two methods for model training:

  • AutoML: Create and train models with minimal technical knowledge and effort. To learn more about AutoML, see AutoML beginner's guide.
  • Custom training: Create a training application that's optimized for your targeted outcome.

For help on deciding which of these methods to use, see Choose a training method.

AutoML

Machine learning (ML) models use training data to learn how to infer results for data that the model was not trained on. AutoML on Vertex AI enables you to build a code-free model based on the training data you provide.

Types of models you can build using AutoML

The types of models you can build depend on the type of data that you have. Vertex AI offers AutoML solutions for the following data types and model objectives:

Data type Supported objectives
Image data Classification, object detection.
Video data Action recognition, classification, object tracking.
Text data Classification, entity extraction, sentiment analysis.
Tabular data Classification/regression, forecasting.

The workflow for training and using an AutoML model is the same, regardless of your datatype or objective:

  1. Prepare your training data.
  2. Create a dataset.
  3. Train a model.
  4. Evaluate and iterate on your model.
  5. Get predictions from your model.
  6. Interpret prediction results.

Image data

AutoML uses machine learning to analyze the content of image data. You can use AutoML to train an ML model to classify image data or find objects in image data.

Classification for images

A classification model analyzes image data and returns a list of content categories that apply to the image. For example, you can train a model that classifies images as containing a cat or not containing a cat, or you could train a model to classify images of dogs by breed.

Documentation: Prepare data | Create dataset | Train model | Evaluate model | Get predictions | Interpret results

Object detection for images

An object detection model analyzes your image data and returns annotations for all objects found in an image, consisting of a label and bounding box location for each object. For example, you can train a model to find the location of the cats in image data.

Documentation: Prepare data | Create dataset | Train model | Evaluate model | Get predictions | Interpret results

Tabular data

AutoML uses machine learning to analyze the content of tabular data. You can use AutoML to train an ML model to use regression to find a numeric value, or use classification to predict a categorical outcome from your tabular data.

Classification and regression for tabular data

A classification model analyzes your tabular data and returns a list of categories that describe the data. For example, you can train a model to predict whether the purchase history for a customer predicts that they will buy a subscription or not.

A regression model analyzes your tabular data and returns a numeric value. For example, you could train a model to estimate the value of a house.

Documentation: Prepare data | Create dataset | Train model | Evaluate model | Get predictions | Interpret results

Forecasting for tabular data

A forecasting model uses multiple rows of time-dependent tabular data from the past to predict a series of numeric values that extend into the future. For example, by forecasting future product demand, a retail organization could optimize its supply chain to reduce the chance of overstocking or selling out of that product.

Documentation: Prepare data | Create dataset | Train model | Evaluate model | Get predictions | Interpret results

For a Jupyter Notebook that illustrates training a forecasting model with AutoML, see:

Vertex AI feature Notebook Description Open in
AutoML Time-series forecasting model Create, train, and use an AutoML time-series forecasting model for batch prediction.

Colab

GitHub

Vertex AI Workbench

Text data

AutoML uses machine learning to analyze the structure and meaning of text data. You can use AutoML to train an ML model to classify text data, extract information, or understand the sentiment of authors.

Classification for text

A classification model analyzes text data and returns a list of categories that apply to the text found in the data. Vertex AI offers both single-label and multi-label text classification models.

Documentation: Prepare data | Create dataset | Train model | Evaluate model | Get predictions | Interpret results

Entity extraction for text

An entity extraction model inspects text data for known entities referenced in the data and labels those entities in the text.

Documentation: Prepare data | Create dataset | Train model | Evaluate model | Get predictions | Interpret results

Sentiment analysis for text

A sentiment analysis model inspects text data and identifies the prevailing emotional opinion within it, especially to determine a writer's attitude as positive, negative, or neutral.

Documentation: Prepare data | Create dataset | Train model | Evaluate model | Get predictions | Interpret results

For a Jupyter Notebook that illustrates training a text classification model with AutoML, see:

Vertex AI feature Notebook Description Open in
AutoML Text classification model Create, train, and deploy a text classification model on Vertex AI.

Colab

GitHub

Vertex AI Workbench

Video data

AutoML uses machine learning to analyze video data to classify shots and segments, or to detect and track multiple objects in your video data.

Action recognition for videos

An action recognition model analyzes your video data and returns a list of categorized actions with the moments that the actions happened. For example, you can train a model that analyzes video data to identify the action moments involving a soccer goal, a golf swing, a touchdown, or a high five.

Documentation: Prepare data | Create dataset | Train model | Evaluate model | Get predictions | Interpret results

Classification for videos

A classification model analyzes your video data and returns a list of categorized shots and segments. For example, you could train a model that analyzes video data to identify if the video is of a baseball, soccer, basketball, or football game.

Documentation: Prepare data | Create dataset | Train model | Evaluate model | Get predictions | Interpret results

Object tracking for videos

An object tracking model analyzes your video data and returns a list of shots and segments where these objects were detected. For example, you could train a model that analyzes video data from soccer games to identify and track the ball.

Documentation: Prepare data | Create dataset | Train model | Evaluate model | Get predictions | Interpret results

Custom training

Vertex AI allows you to train your custom training code using any machine learning framework on a variety of supported Compute Engine VMs with optional GPUs and TPUs. Get started by learning the requirements for your custom training code in Code requirements.