Une fois que vous avez créé une instance de machine virtuelle (VM) avec un ou plusieurs GPU, votre système requiert des pilotes d'appareils NVIDIA pour que vos applications puissent accéder à l'appareil. Assurez-vous que vos instances de machine virtuelle (VM) disposent d'un espace disque disponible suffisant. Vous devez choisir au moins 40 Go pour le disque de démarrage lorsque vous créez la VM.
Deux possibilités s'offrent à vous pour l'installation des pilotes :
Si vous avez besoin de GPU pour des graphismes 3D avec accélération matérielle (par exemple, pour un bureau ou du jeu à distance), consultez la page Installer des pilotes pour les postes de travail virtuels (vWS) NVIDIA RTX.
Sinon, pour les autres charges de travail, suivez les instructions de ce document pour installer le pilote NVIDIA.
Versions du pilote NVIDIA, de CUDA Toolkit et des environnements d'exécution CUDA
Il existe différents composants de pilotes et d'exécutions avec versions gérées qui peuvent être nécessaires dans votre environnement. En voici quelques-uns :
- Pilote NVIDIA
- CUDA Toolkit
- Environnement d'exécution CUDA
Lors de l'installation de ces composants, vous avez la possibilité de configurer votre environnement en fonction de vos besoins. Par exemple, si vous disposez d'une version antérieure de TensorFlow qui fonctionne mieux avec une version antérieure de CUDA Toolkit, mais que le GPU que vous souhaitez utiliser nécessite une version ultérieure du pilote NVIDIA, vous pouvez associer l'installation d'une version antérieure de CUDA Toolkit à l'installation d'une version ultérieure du pilote NVIDIA.
Cependant, vous devez vous assurer que vos versions de pilote NVIDIA et de CUDA Toolkit sont compatibles. Pour connaître la compatibilité de CUDA Toolkit et du pilote NVIDIA, consultez la documentation de NVIDIA sur la compatibilité avec CUDA.
Versions du pilote NVIDIA requises
Pour les GPU NVIDIA exécutés sur Compute Engine, les versions de pilotes NVIDIA suivantes sont recommandées.
Série de machines | Modèle de GPU NVIDIA | Pilote recommandé pour Linux | Pilote recommandé pour Windows |
---|---|---|---|
A3 | H100 | 550.90.07 | N/A |
G2 | L4 | 550.90.07 | 538.67 |
A2 | A100 | 550.90.07 | 538.67 |
N1 | T4, P4, P100 et V100 | 535.183.01 | 538.67 |
Installer des pilotes de GPU sur des VM à l'aide des guides NVIDIA
Pour installer le pilote NVIDIA sur la plupart des VM, vous pouvez installer le NVIDIA CUDA Toolkit.
Pour installer NVIDIA Toolkit, procédez comme suit :
Sélectionnez un CUDA Toolkit compatible avec le pilote minimal dont vous avez besoin.
Connectez-vous à la VM sur laquelle vous souhaitez installer le pilote.
Sur votre VM, téléchargez et installez CUDA Toolkit. Le package d'installation et le guide du toolkit minimal recommandé sont disponibles dans le tableau suivant. Avant d'installer le toolkit, veillez à suivre les étapes de pré-installation indiquées dans le guide d'installation.
Série de machines Modèle de GPU NVIDIA CUDA Toolkit recommandé pour Linux CUDA Toolkit recommandé pour Windows A3 H100 - Lien de téléchargement: CUDA Toolkit 12.4 mise à jour 1
- Guide d'installation : Guide d'installation de CUDA 12.4
N/A G2 L4 - Lien de téléchargement: CUDA Toolkit 12.4 mise à jour 1
- Guide d'installation : Guide d'installation de CUDA 12.4
- Lien de téléchargement: CUDA Toolkit 12.2 mise à jour 2
- Guide d'installation: Guide d'installation de CUDA 12.2
A2 A100 N1 - T4
- V100
- P100
- P4
- Lien de téléchargement: CUDA Toolkit 12.2
- Guide d'installation: Guide d'installation de CUDA 12.2
- Lien de téléchargement: CUDA Toolkit 12.2
- Guide d'installation: Guide d'installation de CUDA 12.2
Installer des pilotes de GPU sur des VM à l'aide d'un script d'installation
Vous pouvez utiliser les scripts suivants pour automatiser le processus d'installation. Pour examiner les scripts, consultez le dépôt GitHub.
Linux
Suivez ces instructions pour installer des pilotes de GPU sur une VM en cours d'exécution.
Systèmes d'exploitation compatibles
Le script d'installation Linux a été testé sur les systèmes d'exploitation suivants :
- Debian 10, 11 et 12
- Red Hat Enterprise Linux (RHEL) 8 et 9
- Rocky Linux 8 et 9
- Ubuntu 20, 22 et 24
Si vous utilisez ce script sur d'autres systèmes d'exploitation, l'installation échouera. Ce script peut installer le pilote NVIDIA ainsi que CUDA Toolkit. Pour installer les pilotes de GPU et CUDA Toolkit, procédez comme suit:
Si vous disposez de la version 2.38.0 ou ultérieure de l'agent Ops collectant des métriques GPU sur votre VM, vous devez l'arrêter pour pouvoir installer ou mettre à niveau vos pilotes de GPU à l'aide de ce script d'installation.
Une fois l'installation ou la mise à niveau du pilote de GPU terminée, vous devez redémarrer la VM.
Pour installer l'agent Ops, exécutez la commande suivante :
sudo systemctl stop google-cloud-ops-agent
Assurez-vous que Python 3 est installé sur votre système d'exploitation.
Téléchargez le script d'installation.
curl -L https://github.com/GoogleCloudPlatform/compute-gpu-installation/releases/download/cuda-installer-v1.1.0/cuda_installer.pyz --output cuda_installer.pyz
Exécutez le script d'installation.
sudo python3 cuda_installer.pyz install_driver
L'exécution du script peut prendre un certain temps. Il redémarrera votre VM. Si la VM redémarre, exécutez à nouveau le script pour continuer l'installation.
Vérifiez l'installation. Consultez la section Vérifier l'installation du pilote de GPU.
Vous pouvez également utiliser cet outil pour installer le CUDA Toolkit. Pour installer le CUDA Toolkit, exécutez la commande suivante:
sudo python3 cuda_installer.pyz install_cuda
L'exécution de ce script peut prendre au moins 30 minutes. Il redémarrera votre VM. Si la VM redémarre, exécutez à nouveau le script pour continuer l'installation.
Vérifiez l'installation de CUDA Toolkit.
sudo python3 cuda_installer.pyz verify_cuda
Linux (script de démarrage)
Suivez ces instructions pour installer des pilotes de GPU au démarrage d'une VM.
Systèmes d'exploitation compatibles
Le script d'installation Linux a été testé sur les systèmes d'exploitation suivants :
- Debian 10, 11 et 12
- Red Hat Enterprise Linux (RHEL) 8 et 9
- Rocky Linux 8 et 9
- Ubuntu 20, 22 et 24
Si vous utilisez ce script sur d'autres systèmes d'exploitation, l'installation échouera. Ce script peut installer le pilote NVIDIA ainsi que CUDA Toolkit.
Utilisez le script de démarrage suivant pour automatiser l'installation du pilote et de CUDA Toolkit:
Windows
Ce script d'installation peut être utilisé sur des VM pour lesquelles le démarrage sécurisé est activé.
- Pour les VM Windows utilisant une série de machines G2, ce script n'installe que le pilote NVIDIA.
- Pour les autres types de machines, le script installe le pilote NVIDIA et CUDA Toolkit.
Ouvrez un terminal PowerShell en tant qu'administrateur, puis procédez comme suit :
Si vous utilisez Windows Server 2016, définissez la version TLS (Transport Layer Security) sur la version 1.2.
[Net.ServicePointManager]::SecurityProtocol = 'Tls12'
Téléchargez le script.
Invoke-WebRequest https://github.com/GoogleCloudPlatform/compute-gpu-installation/raw/main/windows/install_gpu_driver.ps1 -OutFile C:\install_gpu_driver.ps1
Exécutez le script.
C:\install_gpu_driver.ps1
L'exécution du script peut prendre un certain temps. Aucune invite de commande n'est fournie pendant le processus d'installation. Une fois le script terminé, le pilote est installé.
Ce script installe les pilotes à l'emplacement par défaut suivant sur votre VM :
C:\Program Files\NVIDIA Corporation\
.Vérifiez l'installation. Consultez la section Vérifier l'installation du pilote de GPU.
Installer des pilotes de GPU (VM avec démarrage sécurisé)
Ces instructions concernent l'installation de pilotes de GPU sur des VM Linux qui utilisent le démarrage sécurisé.
Si vous utilisez une VM Windows ou une VM Linux sans démarrage sécurisé, consultez plutôt l'un des jeux d'instructions suivants :
- Installer des pilotes de GPU sur des VM
- Installer des pilotes de GPU à l'aide d'un script d'installation
L'installation du pilote sur une VM avec démarrage sécurisé est différente pour les VM Linux, car celles-ci exigent que tous les modules du noyau soient signés par la clé approuvée par le système.
Ces instructions ne sont disponibles que pour les VM Linux avec démarrage sécurisé qui s'exécutent sur des systèmes d'exploitation Ubuntu 18.04, 20.04 et 22.04. D'autres systèmes d'exploitation Linux seront bientôt disponibles.
Pour installer des pilotes de GPU sur vos VM Ubuntu avec démarrage sécurisé, procédez comme suit :
Connectez-vous à la VM sur laquelle vous souhaitez installer le pilote.
Mettez le dépôt à jour.
sudo apt-get update
Recherchez le package de modules de noyau NVIDIA le plus récent, ou bien la version de votre choix. Ce package contient des modules de noyau NVIDIA signés par la clé Ubuntu. Si vous souhaitez rechercher une version antérieure, modifiez le numéro du paramètre de queue pour obtenir une version antérieure. Par exemple, spécifiez
tail -n 2
.Ubuntu PRO et LTS
Pour Ubuntu PRO et LTS, exécutez la commande suivante :
NVIDIA_DRIVER_VERSION=$(sudo apt-cache search 'linux-modules-nvidia-[0-9]+-gcp$' | awk '{print $1}' | sort | tail -n 1 | head -n 1 | awk -F"-" '{print $4}')
Ubuntu PRO FIPS
Pour Ubuntu PRO FIPS, exécutez les commandes suivantes :
Activez les mises à jour Ubuntu FIPS.
sudo ua enable fips-updates
Arrêtez et redémarrez
sudo shutdown -r now
Obtenez le dernier package.
NVIDIA_DRIVER_VERSION=$(sudo apt-cache search 'linux-modules-nvidia-[0-9]+-gcp-fips$' | awk '{print $1}' | sort | tail -n 1 | head -n 1 | awk -F"-" '{print $4}')
Vous pouvez vérifier la version de pilote choisie en exécutant
echo $NVIDIA_DRIVER_VERSION
. Il en résulte une chaîne de version telle que455
.Installez le package des modules de noyau et le pilote NVIDIA correspondant.
sudo apt install linux-modules-nvidia-${NVIDIA_DRIVER_VERSION}-gcp nvidia-driver-${NVIDIA_DRIVER_VERSION}
Si la commande échoue avec une erreur de type
package not found error
, il se peut que le dernier pilote NVIDIA soit absent du dépôt. Réessayez l'étape précédente et sélectionnez une version de pilote antérieure en modifiant le numéro de fin.Vérifiez que le pilote NVIDIA a bien été installé. Vous devrez peut-être redémarrer la VM.
Si vous avez redémarré le système pour vérifier la version de NVIDIA. Après le redémarrage, vous devez réinitialiser la variable
NVIDIA_DRIVER_VERSION
en exécutant à nouveau la commande que vous avez utilisée à l'étape 3.Configurez APT pour utiliser le dépôt de packages NVIDIA.
Pour aider APT à choisir la dépendance appropriée, épinglez les dépôts comme suit :
sudo tee /etc/apt/preferences.d/cuda-repository-pin-600 > /dev/null <<EOL Package: nsight-compute Pin: origin *ubuntu.com* Pin-Priority: -1
Package: nsight-systems Pin: origin *ubuntu.com* Pin-Priority: -1
Package: nvidia-modprobe Pin: release l=NVIDIA CUDA Pin-Priority: 600
Package: nvidia-settings Pin: release l=NVIDIA CUDA Pin-Priority: 600
Package: * Pin: release l=NVIDIA CUDA Pin-Priority: 100 EOLInstallez
software-properties-common
. Cette action est requise si vous utilisez des images Ubuntu Minimal.sudo apt install software-properties-common
Définissez la version d'Ubuntu.
Ubuntu 18.04
Pour Ubuntu 18.04, exécutez la commande suivante :
export UBUNTU_VERSION=ubuntu1804/x86_64
Ubuntu 20.04
Pour Ubuntu 20.04, exécutez la commande suivante :
export UBUNTU_VERSION=ubuntu2004/x86_64
Ubuntu 22.04
Pour Ubuntu 22.04, exécutez la commande suivante :
export UBUNTU_VERSION=ubuntu2204/x86_64
Téléchargez le package
cuda-keyring
:wget https://developer.download.nvidia.com/compute/cuda/repos/$UBUNTU_VERSION/cuda-keyring_1.0-1_all.deb
Installez le package
cuda-keyring
.sudo dpkg -i cuda-keyring_1.0-1_all.deb
Ajoutez le dépôt NVIDIA.
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/$UBUNTU_VERSION/ /"
Si vous y êtes invité, sélectionnez l'action par défaut pour conserver votre version actuelle.
Recherchez la version compatible du pilote CUDA.
Le script suivant détermine la dernière version du pilote CUDA compatible avec le pilote NVIDIA que nous venons d'installer :
CUDA_DRIVER_VERSION=$(apt-cache madison cuda-drivers | awk '{print $3}' | sort -r | while read line; do if dpkg --compare-versions $(dpkg-query -f='${Version}\n' -W nvidia-driver-${NVIDIA_DRIVER_VERSION}) ge $line ; then echo "$line" break fi done)
Vous pouvez vérifier la version de pilote CUDA en exécutant la commande
echo $CUDA_DRIVER_VERSION
. Il en résulte une chaîne de version telle que455.32.00-1
.Installez les pilotes CUDA en spécifiant la version identifiée à l'étape précédente.
sudo apt install cuda-drivers-${NVIDIA_DRIVER_VERSION}=${CUDA_DRIVER_VERSION} cuda-drivers=${CUDA_DRIVER_VERSION}
Facultatif : Conservez les packages
dkms
en attente.Une fois le démarrage sécurisé activé, tous les modules de noyau doivent être signés pour pouvoir être chargés. Les modules de noyau créés par
dkms
ne fonctionnent pas sur la VM, car ils ne sont pas correctement signés par défaut. Cette étape est facultative, mais elle peut vous permettre d'éviter l'installation accidentelle d'autres packagesdkms
par la suite.Pour conserver les packages
dkms
, exécutez la commande suivante :sudo apt-get remove dkms && sudo apt-mark hold dkms
Installez le CUDA Toolkit et l'environnement d'exécution CUDA.
Choisissez la version CUDA appropriée. Le script suivant détermine la dernière version de CUDA compatible avec le pilote CUDA que nous venons d'installer :
CUDA_VERSION=$(apt-cache showpkg cuda-drivers | grep -o 'cuda-runtime-[0-9][0-9]-[0-9],cuda-drivers [0-9\\.]*' | while read line; do if dpkg --compare-versions ${CUDA_DRIVER_VERSION} ge $(echo $line | grep -Eo '[[:digit:]]+\.[[:digit:]]+') ; then echo $(echo $line | grep -Eo '[[:digit:]]+-[[:digit:]]') break fi done)
Vous pouvez vérifier la version CUDA en exécutant la commande
echo $CUDA_VERSION
. Il en résulte une chaîne de version telle que11-1
.Installez le package CUDA.
sudo apt install cuda-${CUDA_VERSION}
Vérifiez l'installation de CUDA.
sudo nvidia-smi
/usr/local/cuda/bin/nvcc --version
La première commande renvoie les informations sur le GPU. La deuxième commande affiche la version du compilateur CUDA installée.
Vérifier l'installation du pilote de GPU
Une fois l'installation du pilote effectuée, vérifiez que celui-ci est correctement installé et initialisé.
Linux
Connectez-vous à l'instance Linux et utilisez la commande nvidia-smi
pour vérifier que le pilote fonctionne correctement.
sudo nvidia-smi
Le résultat ressemble à ce qui suit :
Tue Mar 21 19:50:15 2023 +-----------------------------------------------------------------------------------------+ | NVIDIA-SMI 550.90.07 Driver Version: 550.90.07 CUDA Version: 12.4 | |-----------------------------------------+------------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+========================+======================| | 0 Tesla T4 On | 00000000:00:04.0 Off | 0 | | N/A 50C P8 16W / 70W | 1MiB / 15360MiB | 0% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ +-----------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=========================================================================================| | No running processes found | +-----------------------------------------------------------------------------------------+
Si cette commande échoue, examinez les éléments suivants :
Vérifiez si des GPU sont associés à la VM. Pour rechercher des appareils NVIDIA PCI, exécutez la commande suivante:
sudo lspci | grep -i "nvidia"
Vérifiez que la version du noyau du pilote et celle du noyau de la VM sont identiques.
Pour vérifier la version du noyau de la VM, exécutez la commande suivante:
uname -r
Pour vérifier la version du noyau du pilote, exécutez la commande suivante:
sudo apt-cache show linux-modules-nvidia-NVIDIA_DRIVER_VERSION-gcp
Si les versions ne correspondent pas, redémarrez la VM avec la nouvelle version du noyau.
Windows Server
Connectez-vous à l'instance Windows Server, ouvrez un terminal PowerShell, puis exécutez la commande suivante pour vérifier que le pilote fonctionne correctement.
nvidia-smi
Le résultat ressemble à ce qui suit :
+---------------------------------------------------------------------------------------+ | NVIDIA-SMI 538.67 Driver Version: 538.67 CUDA Version: 12.2 | |-----------------------------------------+----------------------+----------------------+ | GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+======================+======================| | 0 NVIDIA L4 WDDM | 00000000:00:03.0 Off | 0 | | N/A 66C P8 17W / 72W | 128MiB / 23034MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ +---------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=======================================================================================| | 0 N/A N/A 4888 C+G ...CBS_cw5n1h2txyewy\TextInputHost.exe N/A | | 0 N/A N/A 5180 C+G ....Search_cw5n1h2txyewy\SearchApp.exe N/A | +---------------------------------------------------------------------------------------+
Étape suivante
- Pour surveiller les performances du GPU, consultez la page Surveiller les performances du GPU.
- Pour gérer la maintenance de l'hôte GPU, consultez la section Gérer les événements de maintenance de l'hôte GPU.
- Pour améliorer les performances du réseau, consultez la section Utiliser une bande passante réseau plus élevée.
- Pour dépanner les VM GPU, consultez la page Résoudre les problèmes liés aux VM GPU.