Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Panoramica dei pesi del modello BigQuery ML
Questo documento descrive in che modo BigQuery ML supporta la rilevabilità dei pesi dei modelli per i modelli di machine learning (ML).
Un modello ML è un artefatto che viene salvato dopo l'esecuzione di un algoritmo ML sui
dati di addestramento. Il modello rappresenta le regole, i numeri e qualsiasi altra struttura di dati specifica dell'algoritmo necessaria per fare previsioni. Ecco alcuni esempi:
Un modello di regressione lineare è costituito da un vettore di coefficienti con valori specifici.
Un modello di albero decisionale è costituito da uno o più alberi di istruzioni se-allora con valori specifici.
Un modello di rete neurale profonda è costituito da una struttura di grafo con vettori o
matricole di pesi con valori specifici.
In BigQuery ML, il termine pesi del modello viene utilizzato per descrivere i componenti di un modello.
Recupera i coefficienti del modello ARIMA, che viene utilizzato per modellare il componente di tendenza della serie temporale di input. Per informazioni su altri componenti, ad esempio i modelli stagionali presenti nella serie temporale, utilizza ML.ARIMA_EVALUATE.
BigQuery ML non supporta le funzioni di peso del modello per i seguenti tipi di modelli:
Per visualizzare i pesi di tutti questi tipi di modelli, tranne per i modelli AutoML Tables, esporta il modello da BigQuery ML in Cloud Storage.
Puoi quindi utilizzare la libreria XGBoost per visualizzare la struttura ad albero per i modelli boosted tree e random forest oppure la libreria TensorFlow per visualizzare la struttura del grafico per i modelli DNN e wide-and-deep. Non esiste un metodo per ottenere informazioni sui pesi dei modelli per i modelli AutoML Tables.
[[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema è stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Difficile da capire","hardToUnderstand","thumb-down"],["Informazioni o codice di esempio errati","incorrectInformationOrSampleCode","thumb-down"],["Mancano le informazioni o gli esempi di cui ho bisogno","missingTheInformationSamplesINeed","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Altra","otherDown","thumb-down"]],["Ultimo aggiornamento 2025-09-04 UTC."],[[["\u003cp\u003eBigQuery ML uses the term "model weights" to describe the components that make up a machine learning model, such as coefficients, trees of if-then statements, or graph structures with weights.\u003c/p\u003e\n"],["\u003cp\u003eBigQuery ML provides functions like \u003ccode\u003eML.WEIGHTS\u003c/code\u003e, \u003ccode\u003eML.CENTROIDS\u003c/code\u003e, \u003ccode\u003eML.PRINCIPAL_COMPONENTS\u003c/code\u003e, \u003ccode\u003eML.PRINCIPAL_COMPONENT_INFO\u003c/code\u003e, and \u003ccode\u003eML.ARIMA_COEFFICIENTS\u003c/code\u003e to retrieve model weights for various supervised and unsupervised model types.\u003c/p\u003e\n"],["\u003cp\u003eSupported model categories include supervised models like Linear and Logistic Regression, and unsupervised models like Kmeans, Matrix Factorization, and PCA, alongside Time series models such as ARIMA_PLUS, each having their corresponding weight retrieval functions.\u003c/p\u003e\n"],["\u003cp\u003eModel weight functions are not supported for models like Boosted tree, Random forest, Deep neural network (DNN), Wide-and-deep, and AutoML Tables, however, you can export most of these model types to Cloud Storage to visualize them using XGBoost or TensorFlow, except for AutoML Tables.\u003c/p\u003e\n"]]],[],null,["# BigQuery ML model weights overview\n==================================\n\nThis document describes how BigQuery ML supports model weights\ndiscoverability for machine learning (ML) models.\n\nAn ML model is an artifact that is saved after running an ML algorithm on\ntraining data. The model represents the rules, numbers,\nand any other algorithm-specific data structures that are required to make\npredictions. Some examples include the following:\n\n- A linear regression model is comprised of a vector of coefficients that have specific values.\n- A decision tree model is comprised of one or more trees of if-then statements that have specific values.\n- A deep neural network model is comprised of a graph structure with vectors or matrices of weights that have specific values.\n\nIn BigQuery ML, the term *model weights* is used to describe the\ncomponents that a model is comprised of.\n\nFor information about the supported SQL statements and functions for each\nmodel type, see\n[End-to-end user journey for each model](/bigquery/docs/e2e-journey).\n\nModel weights offerings in BigQuery ML\n--------------------------------------\n\nBigQuery ML offers multiple functions that you can use to\nretrieve the model weights for different models.\n\nBigQuery ML doesn't support model weight functions for the\nfollowing types of models:\n\n- [Boosted tree](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-boosted-tree)\n- [Random forest](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-random-forest)\n- [Deep neural network (DNN)](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-dnn-models)\n- [Wide-and-deep](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-wnd-models)\n- [AutoML Tables](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-automl)\n\nTo see the weights of all of these model types except for AutoML Tables\nmodels, export the model from BigQuery ML to Cloud Storage.\nYou can then use the XGBoost library to visualize the tree structure for\nboosted tree and random forest models, or the TensorFlow library\nto visualize the graph structure for DNN and wide-and-deep models. There is no\nmethod for getting model weight information for AutoML Tables models.\n\nFor more information about exporting a model, see\n[`EXPORT MODEL` statement](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-export-model)\nand\n[Export a BigQuery ML model for online prediction](/bigquery/docs/export-model-tutorial)."]]