Anomalieerkennung mit einem multivariaten Zeitreihenprognosemodell durchführen

In dieser Anleitung werden die folgenden Aufgaben erläutert:

In dieser Anleitung werden die folgenden Tabellen aus dem öffentlichen epa_historical_air_quality-Dataset verwendet, das tägliche PM2.5-, Temperatur- und Windgeschwindigkeitsdaten aus mehreren US-Städten enthält:

Erforderliche Berechtigungen

  • Sie benötigen die IAM-Berechtigung bigquery.datasets.create, um das Dataset zu erstellen.
  • Zum Erstellen der Verbindungsressource benötigen Sie die folgenden Berechtigungen:

    • bigquery.connections.create
    • bigquery.connections.get
  • Zum Erstellen des Modells benötigen Sie die folgenden Berechtigungen:

    • bigquery.jobs.create
    • bigquery.models.create
    • bigquery.models.getData
    • bigquery.models.updateData
    • bigquery.connections.delegate
  • Zum Ausführen von Inferenzen benötigen Sie die folgenden Berechtigungen:

    • bigquery.models.getData
    • bigquery.jobs.create

Weitere Informationen zu IAM-Rollen und Berechtigungen in BigQuery finden Sie unter Einführung in IAM.

Kosten

In diesem Dokument verwenden Sie die folgenden kostenpflichtigen Komponenten von Google Cloud:

  • BigQuery: You incur costs for the data you process in BigQuery.

Mit dem Preisrechner können Sie eine Kostenschätzung für Ihre voraussichtliche Nutzung vornehmen. Neuen Google Cloud-Nutzern steht möglicherweise eine kostenlose Testversion zur Verfügung.

Weitere Informationen finden Sie unter BigQuery-Preise.

Hinweise

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the BigQuery API.

    Enable the API

  5. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  6. Make sure that billing is enabled for your Google Cloud project.

  7. Enable the BigQuery API.

    Enable the API

Dataset erstellen

Erstellen Sie ein BigQuery-Dataset, um Ihr ML-Modell zu speichern:

  1. Rufen Sie in der Google Cloud Console die Seite „BigQuery“ auf.

    Zur Seite „BigQuery“

  2. Klicken Sie im Bereich Explorer auf den Namen Ihres Projekts.

  3. Klicken Sie auf Aktionen ansehen > Dataset erstellen.

    Dataset erstellen

  4. Führen Sie auf der Seite Dataset erstellen die folgenden Schritte aus:

    • Geben Sie unter Dataset-ID bqml_tutorial ein.

    • Wählen Sie als Standorttyp die Option Mehrere Regionen und dann USA (mehrere Regionen in den USA) aus.

      Die öffentlichen Datasets sind am multiregionalen Standort US gespeichert. Der Einfachheit halber sollten Sie Ihr Dataset am selben Standort speichern.

    • Übernehmen Sie die verbleibenden Standardeinstellungen unverändert und klicken Sie auf Dataset erstellen.

      Seite "Dataset erstellen"

Trainingsdaten vorbereiten

Die Daten zu PM2.5, Temperatur und Windgeschwindigkeit befinden sich in separaten Tabellen. Erstellen Sie die Tabelle bqml_tutorial.seattle_air_quality_daily mit Trainingsdaten, indem Sie die Daten in diesen öffentlichen Tabellen kombinieren. bqml_tutorial.seattle_air_quality_daily enthält die folgenden Spalten:

  • date: das Datum der Beobachtung
  • PM2.5: der durchschnittliche PM2.5-Wert je Tag
  • wind_speed: durchschnittliche Windgeschwindigkeit je Tag
  • temperature: Temperatur: die Höchsttemperatur je Tag

Die neue Tabelle enthält Tagesdaten vom 11. August 2009 bis zum 31. Januar 2022.

  1. Rufen Sie die Seite BigQuery auf.

    BigQuery aufrufen

  2. Führen Sie im SQL-Editorbereich die folgende SQL-Anweisung aus:

    CREATE TABLE `bqml_tutorial.seattle_air_quality_daily`
    AS
    WITH
      pm25_daily AS (
        SELECT
          avg(arithmetic_mean) AS pm25, date_local AS date
        FROM
          `bigquery-public-data.epa_historical_air_quality.pm25_nonfrm_daily_summary`
        WHERE
          city_name = 'Seattle'
          AND parameter_name = 'Acceptable PM2.5 AQI & Speciation Mass'
        GROUP BY date_local
      ),
      wind_speed_daily AS (
        SELECT
          avg(arithmetic_mean) AS wind_speed, date_local AS date
        FROM
          `bigquery-public-data.epa_historical_air_quality.wind_daily_summary`
        WHERE
          city_name = 'Seattle' AND parameter_name = 'Wind Speed - Resultant'
        GROUP BY date_local
      ),
      temperature_daily AS (
        SELECT
          avg(first_max_value) AS temperature, date_local AS date
        FROM
          `bigquery-public-data.epa_historical_air_quality.temperature_daily_summary`
        WHERE
          city_name = 'Seattle' AND parameter_name = 'Outdoor Temperature'
        GROUP BY date_local
      )
    SELECT
      pm25_daily.date AS date, pm25, wind_speed, temperature
    FROM pm25_daily
    JOIN wind_speed_daily USING (date)
    JOIN temperature_daily USING (date)

Modell erstellen

Erstellen Sie ein multivariates Zeitreihenmodell. Verwenden Sie dazu die Daten aus bqml_tutorial.seattle_air_quality_daily als Trainingsdaten.

  1. Rufen Sie die Seite BigQuery auf.

    BigQuery aufrufen

  2. Führen Sie im SQL-Editorbereich die folgende SQL-Anweisung aus:

    CREATE OR REPLACE MODEL `bqml_tutorial.arimax_model`
      OPTIONS (
        model_type = 'ARIMA_PLUS_XREG',
        auto_arima=TRUE,
        time_series_data_col = 'temperature',
        time_series_timestamp_col = 'date'
        )
    AS
    SELECT
      *
    FROM
      `bqml_tutorial.seattle_air_quality_daily`;

    Die Abfrage dauert mehrere Sekunden. Anschließend wird das Modell arimax_model im bqml_tutorial-Dataset des Bereichs Explorer angezeigt.

    Da die Abfrage eine CREATE MODEL-Anweisung zum Erstellen eines Modells verwendet, gibt es keine Abfrageergebnisse.

Anomalieerkennung für Verlaufsdaten durchführen

Führen Sie die Anomalieerkennung für die Verlaufsdaten aus, mit denen Sie das Modell trainiert haben.

  1. Rufen Sie die Seite BigQuery auf.

    BigQuery aufrufen

  2. Führen Sie im SQL-Editorbereich die folgende SQL-Anweisung aus:

    SELECT
      *
    FROM
      ML.DETECT_ANOMALIES (
       MODEL `bqml_tutorial.arimax_model`,
       STRUCT(0.6 AS anomaly_prob_threshold)
      )
    ORDER BY
      date ASC;

    Die Ergebnisse sehen in etwa so aus:

    +-------------------------+-------------+------------+--------------------+--------------------+---------------------+
    | date                    | temperature | is_anomaly | lower_bound        | upper_bound        | anomaly_probability |
    +--------------------------------------------------------------------------------------------------------------------+
    | 2009-08-11 00:00:00 UTC | 70.1        | false      | 67.65880237416745  | 72.541197625832538 | 0                   |
    +--------------------------------------------------------------------------------------------------------------------+
    | 2009-08-12 00:00:00 UTC | 73.4        | false      | 71.715603233887791 | 76.597998485552878 | 0.20589853827304627 |
    +--------------------------------------------------------------------------------------------------------------------+
    | 2009-08-13 00:00:00 UTC | 64.6        | true       | 67.741606808079425 | 72.624002059744512 | 0.94627126678202522 |
    +-------------------------+-------------+------------+--------------------+--------------------+---------------------+
    

Anomalieerkennung für neue Daten durchführen

Führen Sie die Anomalieerkennung für die von Ihnen generierten neuen Daten aus.

  1. Rufen Sie die Seite BigQuery auf.

    BigQuery aufrufen

  2. Führen Sie im SQL-Editorbereich die folgende SQL-Anweisung aus:

    SELECT
      *
    FROM
      ML.DETECT_ANOMALIES (
       MODEL `bqml_tutorial.arimax_model`,
       STRUCT(0.6 AS anomaly_prob_threshold),
       (
         SELECT
           *
         FROM
           UNNEST(
             [
               STRUCT<date TIMESTAMP, pm25 FLOAT64, wind_speed FLOAT64, temperature FLOAT64>
               ('2023-02-01 00:00:00 UTC', 8.8166665, 1.6525, 44.0),
               ('2023-02-02 00:00:00 UTC', 11.8354165, 1.558333, 40.5),
               ('2023-02-03 00:00:00 UTC', 10.1395835, 1.6895835, 46.5),
               ('2023-02-04 00:00:00 UTC', 11.439583500000001, 2.0854165, 45.0),
               ('2023-02-05 00:00:00 UTC', 9.7208335, 1.7083335, 46.0),
               ('2023-02-06 00:00:00 UTC', 13.3020835, 2.23125, 43.5),
               ('2023-02-07 00:00:00 UTC', 5.7229165, 2.377083, 47.5),
               ('2023-02-08 00:00:00 UTC', 7.6291665, 2.24375, 44.5),
               ('2023-02-09 00:00:00 UTC', 8.5208335, 2.2541665, 40.5),
               ('2023-02-10 00:00:00 UTC', 9.9086955, 7.333335, 39.5)
             ]
           )
         )
       );

    Die Ergebnisse sehen in etwa so aus:

    +-------------------------+-------------+------------+--------------------+--------------------+---------------------+------------+------------+
    | date                    | temperature | is_anomaly | lower_bound        | upper_bound        | anomaly_probability | pm25       | wind_speed |
    +----------------------------------------------------------------------------------------------------------------------------------------------+
    | 2023-02-01 00:00:00 UTC | 44.0        | true       | 36.917405956304407 | 41.79980120796948  | 0.890904731626234   | 8.8166665  | 1.6525     |
    +----------------------------------------------------------------------------------------------------------------------------------------------+
    | 2023-02-02 00:00:00 UTC | 40.5        | false      | 34.622436643607685 | 40.884690866417984 | 0.53985850962605064 | 11.8354165 | 1.558333   |
    +--------------------------------------------------------------------------------------------------------------------+-------------------------+
    | 2023-02-03 00:00:00 UTC | 46.5        | true       | 33.769587937313183 | 40.7478502941026   | 0.97434506593220793 | 10.1395835 | 1.6895835  |
    +-------------------------+-------------+------------+--------------------+--------------------+---------------------+-------------------------+
    

Bereinigen

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.