Entitätstypen verwalten

Erfahren Sie, wie Sie Entitätstypen erstellen, auflisten und löschen.

Entitätstyp erstellen

Erstellen Sie einen Entitätstyp, damit Sie die zugehörigen Features erstellen können.

Web-UI

  1. Rufen Sie im Bereich "Vertex AI" der Google Cloud Console die Seite Features auf.

    Zur Seite „Features“

  2. Klicken Sie in der Aktionsleiste auf Entitätstyp erstellen, um den Bereich Entitätstyp erstellen zu öffnen.
  3. Wählen Sie eine Region aus der Drop-down-Liste Region aus, die den Feature Store enthält, in dem Sie einen Entitätstyp erstellen möchten.
  4. Wählen Sie einen Feature Store aus.
  5. Geben Sie einen Namen für den Entitätstyp an.
  6. Wenn Sie eine Beschreibung für den Entitätstyp einschließen möchten, geben Sie diese ein.
  7. Setzen Sie das Monitoring auf Aktiviert und geben Sie das Snapshot-Intervall in Tagen an, um das Monitoring des Featurewerts zu aktivieren (Vorschau). Diese Monitoring-Konfiguration gilt für alle Features unter diesem Entitätstyp. Weitere Informationen finden Sie unter Featurewert-Monitoring.
  8. Klicken Sie auf Erstellen.

Terraform

Im folgenden Beispiel wird ein neuer Feature Store erstellt und dann die Terraform-Ressource google_vertex_ai_featurestore_entitytype verwendet, um einen Entitätstyp namens featurestore_entitytype in diesem Feature Store zu erstellen.

Informationen zum Anwenden oder Entfernen einer Terraform-Konfiguration finden Sie unter Grundlegende Terraform-Befehle.

# Featurestore name must be unique for the project
resource "random_id" "featurestore_name_suffix" {
  byte_length = 8
}

resource "google_vertex_ai_featurestore" "featurestore" {
  name   = "featurestore_${random_id.featurestore_name_suffix.hex}"
  region = "us-central1"
  labels = {
    environment = "testing"
  }

  online_serving_config {
    fixed_node_count = 1
  }

  force_destroy = true
}

output "featurestore_id" {
  value = google_vertex_ai_featurestore.featurestore.id
}

resource "google_vertex_ai_featurestore_entitytype" "entity" {
  name = "featurestore_entitytype"
  labels = {
    environment = "testing"
  }

  featurestore = google_vertex_ai_featurestore.featurestore.id

  monitoring_config {
    snapshot_analysis {
      disabled = false
    }
  }

  depends_on = [google_vertex_ai_featurestore.featurestore]
}

REST

Senden Sie zum Erstellen eines Entitätstyps eine POST-Anfrage mit der Methode featurestores.entityTypes.create.

Ersetzen Sie dabei folgende Werte für die Anfragedaten:

  • LOCATION_ID: Die Region, in der sich der Featurestore befindet, z. B. us-central1.
  • PROJECT_ID: Ihre Projekt-ID.
  • FEATURESTORE_ID: ID des Featurestores.
  • ENTITY_TYPE_ID: ID des Entitätstyps.
  • DESCRIPTION: Beschreibung des Entitätstyps.

HTTP-Methode und URL:

POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes?entityTypeId=ENTITY_TYPE_ID

JSON-Text der Anfrage:

{
  "description": "DESCRIPTION"
}

Wenn Sie die Anfrage senden möchten, wählen Sie eine der folgenden Optionen aus:

curl

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes?entityTypeId=ENTITY_TYPE_ID"

PowerShell

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes?entityTypeId=ENTITY_TYPE_ID" | Select-Object -Expand Content

Die Ausgabe sieht in etwa so aus: Sie können OPERATION_ID in der Antwort verwenden, um den Status des Vorgangs abzurufen.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/bikes/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateEntityTypeOperationMetadata",
    "genericMetadata": {
      "createTime": "2021-03-02T00:04:13.039166Z",
      "updateTime": "2021-03-02T00:04:13.039166Z"
    }
  }
}

Python

Informationen zur Installation des Vertex AI SDK for Python finden Sie unter Vertex AI SDK for Python installieren. Weitere Informationen finden Sie in der Referenzdokumentation zur Python API.

from google.cloud import aiplatform


def create_entity_type_sample(
    project: str,
    location: str,
    entity_type_id: str,
    featurestore_name: str,
):

    aiplatform.init(project=project, location=location)

    my_entity_type = aiplatform.EntityType.create(
        entity_type_id=entity_type_id, featurestore_name=featurestore_name
    )

    my_entity_type.wait()

    return my_entity_type

Python

Die Clientbibliothek für Vertex AI ist bei der Installation des Vertex AI SDK für Python enthalten. Informationen zur Installation des Vertex AI SDK für Python finden Sie unter Vertex AI SDK für Python installieren. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI SDK for Python API.

from google.cloud import aiplatform


def create_entity_type_sample(
    project: str,
    featurestore_id: str,
    entity_type_id: str,
    description: str = "sample entity type",
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
    timeout: int = 300,
):
    # The AI Platform services require regional API endpoints, which need to be
    # in the same region or multi-region overlap with the Feature Store location.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.FeaturestoreServiceClient(client_options=client_options)
    parent = f"projects/{project}/locations/{location}/featurestores/{featurestore_id}"
    create_entity_type_request = aiplatform.gapic.CreateEntityTypeRequest(
        parent=parent,
        entity_type_id=entity_type_id,
        entity_type=aiplatform.gapic.EntityType(description=description),
    )
    lro_response = client.create_entity_type(request=create_entity_type_request)
    print("Long running operation:", lro_response.operation.name)
    create_entity_type_response = lro_response.result(timeout=timeout)
    print("create_entity_type_response:", create_entity_type_response)

Java

Bevor Sie dieses Beispiel anwenden, folgen Sie den Java-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Java API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateEntityTypeOperationMetadata;
import com.google.cloud.aiplatform.v1.CreateEntityTypeRequest;
import com.google.cloud.aiplatform.v1.EntityType;
import com.google.cloud.aiplatform.v1.FeaturestoreName;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateEntityTypeSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String featurestoreId = "YOUR_FEATURESTORE_ID";
    String entityTypeId = "YOUR_ENTITY_TYPE_ID";
    String description = "YOUR_ENTITY_TYPE_DESCRIPTION";
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    int timeout = 300;
    createEntityTypeSample(
        project, featurestoreId, entityTypeId, description, location, endpoint, timeout);
  }

  static void createEntityTypeSample(
      String project,
      String featurestoreId,
      String entityTypeId,
      String description,
      String location,
      String endpoint,
      int timeout)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {

    FeaturestoreServiceSettings featurestoreServiceSettings =
        FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreServiceClient featurestoreServiceClient =
        FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

      EntityType entityType = EntityType.newBuilder().setDescription(description).build();

      CreateEntityTypeRequest createEntityTypeRequest =
          CreateEntityTypeRequest.newBuilder()
              .setParent(FeaturestoreName.of(project, location, featurestoreId).toString())
              .setEntityType(entityType)
              .setEntityTypeId(entityTypeId)
              .build();

      OperationFuture<EntityType, CreateEntityTypeOperationMetadata> entityTypeFuture =
          featurestoreServiceClient.createEntityTypeAsync(createEntityTypeRequest);
      System.out.format(
          "Operation name: %s%n", entityTypeFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      EntityType entityTypeResponse = entityTypeFuture.get(timeout, TimeUnit.SECONDS);
      System.out.println("Create Entity Type Response");
      System.out.format("Name: %s%n", entityTypeResponse.getName());
    }
  }
}

Node.js

Bevor Sie dieses Beispiel anwenden, folgen Sie den Node.js-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Node.js API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const featurestoreId = 'YOUR_FEATURESTORE_ID';
// const entityTypeId = 'YOUR_ENTITY_TYPE_ID';
// const description = 'YOUR_ENTITY_TYPE_DESCRIPTION';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreServiceClient = new FeaturestoreServiceClient(
  clientOptions
);

async function createEntityType() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}/featurestores/${featurestoreId}`;

  const entityType = {
    description: description,
  };

  const request = {
    parent: parent,
    entityTypeId: entityTypeId,
    entityType: entityType,
  };

  // Create EntityType request
  const [operation] = await featurestoreServiceClient.createEntityType(
    request,
    {timeout: Number(timeout)}
  );
  const [response] = await operation.promise();

  console.log('Create entity type response');
  console.log(`Name : ${response.name}`);
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
createEntityType();

Entitätstypen auflisten

Listen Sie alle Entitätstypen in einem Feature Store auf.

Web-UI

  1. Rufen Sie im Bereich "Vertex AI" der Google Cloud Console die Seite Features auf.

    Zur Seite „Features“

  2. Wählen Sie eine Region aus der Drop-down-Liste Region aus.
  3. Sehen Sie sich in der Features-Tabelle die Spalte Entitätstyp an, um die Entitätstypen in Ihrem Projekt für die ausgewählte Region aufzurufen.

REST

Senden Sie zum Auflisten von Entitätstypen eine GET-Anfrage mit der Methode featurestores.entityTypes.list.

Ersetzen Sie dabei folgende Werte für die Anfragedaten:

  • LOCATION_ID: Die Region, in der sich der Featurestore befindet, z. B. us-central1.
  • PROJECT_ID: Ihre Projekt-ID.
  • FEATURESTORE_ID: ID des Featurestores.

HTTP-Methode und URL:

GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes

Senden Sie die Anfrage mithilfe einer der folgenden Optionen:

curl

Führen Sie folgenden Befehl aus:

curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes"

PowerShell

Führen Sie folgenden Befehl aus:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes" | Select-Object -Expand Content

Sie sollten in etwa folgende JSON-Antwort erhalten:

{
  "entityTypes": [
    {
      "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID_1",
      "description": "ENTITY_TYPE_DESCRIPTION",
      "createTime": "2021-02-25T01:20:43.082628Z",
      "updateTime": "2021-02-25T01:20:43.082628Z",
      "etag": "AMEw9yOBqKIdbBGZcxdKLrlZJAf9eTO2DEzcE81YDKA2LymDMFB8ucRbmKwKo2KnvOg="
    },
    {
      "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID_2",
      "description": "ENTITY_TYPE_DESCRIPTION",
      "createTime": "2021-02-25T01:34:26.198628Z",
      "updateTime": "2021-02-25T01:34:26.198628Z",
      "etag": "AMEw9yNuv-ILYG8VLLm1lgIKc7asGIAVFErjvH2Cyc_wIQm7d6DL4ZGv59cwZmxTumU="
    }
  ]
}

Java

Bevor Sie dieses Beispiel anwenden, folgen Sie den Java-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Java API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


import com.google.cloud.aiplatform.v1.EntityType;
import com.google.cloud.aiplatform.v1.FeaturestoreName;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import com.google.cloud.aiplatform.v1.ListEntityTypesRequest;
import java.io.IOException;

public class ListEntityTypesSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String featurestoreId = "YOUR_FEATURESTORE_ID";
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    listEntityTypesSample(project, featurestoreId, location, endpoint);
  }

  static void listEntityTypesSample(
      String project, String featurestoreId, String location, String endpoint) throws IOException {

    FeaturestoreServiceSettings featurestoreServiceSettings =
        FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreServiceClient featurestoreServiceClient =
        FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

      ListEntityTypesRequest listEntityTypeRequest =
          ListEntityTypesRequest.newBuilder()
              .setParent(FeaturestoreName.of(project, location, featurestoreId).toString())
              .build();
      System.out.println("List Entity Types Response");
      for (EntityType element :
          featurestoreServiceClient.listEntityTypes(listEntityTypeRequest).iterateAll()) {
        System.out.println(element);
      }
    }
  }
}

Node.js

Bevor Sie dieses Beispiel anwenden, folgen Sie den Node.js-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Node.js API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const featurestoreId = 'YOUR_FEATURESTORE_ID';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreServiceClient = new FeaturestoreServiceClient(
  clientOptions
);

async function listEntityTypes() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}/featurestores/${featurestoreId}`;

  const request = {
    parent: parent,
  };

  // List EntityTypes request
  const [response] = await featurestoreServiceClient.listEntityTypes(
    request,
    {timeout: Number(timeout)}
  );

  console.log('List entity types response');
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
listEntityTypes();

Weitere Sprachen

Informationen zum Installieren und Verwenden des Vertex AI SDK für Python finden Sie unter Vertex AI SDK für Python verwenden. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI SDK for Python API.

Entitätstyp löschen

Löschen Sie einen Entitätstyp. Wenn Sie die Google Cloud Console verwenden, löscht der Vertex AI Feature Store (Legacy) den Entitätstyp und dessen gesamten Inhalt. Wenn Sie die API verwenden, aktivieren Sie den Abfrageparameter force, um den Entitätstyp und seinen gesamten Inhalt zu löschen.

Web-UI

  1. Rufen Sie im Bereich "Vertex AI" der Google Cloud Console die Seite Features auf.

    Zur Seite „Features“

  2. Wählen Sie eine Region aus der Drop-down-Liste Region aus.
  3. Suchen Sie in der Features-Tabelle die Spalte Entitätstyp und suchen Sie den zu löschenden Entitätstyp.
  4. Klicken Sie auf den Namen des Entitätstyps.
  5. Klicken Sie in der Aktionsleiste auf Löschen.
  6. Klicken Sie auf Bestätigen, um den Entitätstyp zu löschen.

REST

Senden Sie zum Löschen eines Entitätstyps eine DELETE-Anfrage mit der Methode featurestores.entityTypes.delete.

Ersetzen Sie dabei folgende Werte für die Anfragedaten:

  • LOCATION_ID: Die Region, in der sich der Featurestore befindet, z. B. us-central1.
  • PROJECT_ID: Ihre Projekt-ID.
  • FEATURESTORE_ID: ID des Featurestores.
  • ENTITY_TYPE_ID: ID des Entitätstyps.
  • BOOLEAN: Gibt an, ob der Entitätstyp gelöscht werden soll, auch wenn er Features enthält. Der force-Abfrageparameter ist optional und standardmäßig false.

HTTP-Methode und URL:

DELETE https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?force=BOOLEAN

Senden Sie die Anfrage mithilfe einer der folgenden Optionen:

curl

Führen Sie folgenden Befehl aus:

curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?force=BOOLEAN"

PowerShell

Führen Sie folgenden Befehl aus:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?force=BOOLEAN" | Select-Object -Expand Content

Sie sollten in etwa folgende JSON-Antwort erhalten:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.DeleteOperationMetadata",
    "genericMetadata": {
      "createTime": "2021-02-26T17:32:56.008325Z",
      "updateTime": "2021-02-26T17:32:56.008325Z"
    }
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.protobuf.Empty"
  }
}

Java

Bevor Sie dieses Beispiel anwenden, folgen Sie den Java-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Java API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DeleteEntityTypeRequest;
import com.google.cloud.aiplatform.v1.DeleteOperationMetadata;
import com.google.cloud.aiplatform.v1.EntityTypeName;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class DeleteEntityTypeSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String featurestoreId = "YOUR_FEATURESTORE_ID";
    String entityTypeId = "YOUR_ENTITY_TYPE_ID";
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    int timeout = 300;
    deleteEntityTypeSample(project, featurestoreId, entityTypeId, location, endpoint, timeout);
  }

  static void deleteEntityTypeSample(
      String project,
      String featurestoreId,
      String entityTypeId,
      String location,
      String endpoint,
      int timeout)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {

    FeaturestoreServiceSettings featurestoreServiceSettings =
        FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreServiceClient featurestoreServiceClient =
        FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

      DeleteEntityTypeRequest deleteEntityTypeRequest =
          DeleteEntityTypeRequest.newBuilder()
              .setName(
                  EntityTypeName.of(project, location, featurestoreId, entityTypeId).toString())
              .setForce(true)
              .build();

      OperationFuture<Empty, DeleteOperationMetadata> operationFuture =
          featurestoreServiceClient.deleteEntityTypeAsync(deleteEntityTypeRequest);
      System.out.format("Operation name: %s%n", operationFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      operationFuture.get(timeout, TimeUnit.SECONDS);

      System.out.format("Deleted Entity Type.");
    }
  }
}

Node.js

Bevor Sie dieses Beispiel anwenden, folgen Sie den Node.js-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Node.js API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const featurestoreId = 'YOUR_FEATURESTORE_ID';
// const entityTypeId = 'YOUR_ENTITY_TYPE_ID';
// const force = <BOOLEAN>;
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreServiceClient = new FeaturestoreServiceClient(
  clientOptions
);

async function deleteEntityType() {
  // Configure the name resource
  const name = `projects/${project}/locations/${location}/featurestores/${featurestoreId}/entityTypes/${entityTypeId}`;

  const request = {
    name: name,
    force: Boolean(force),
  };

  // Delete EntityType request
  const [operation] = await featurestoreServiceClient.deleteEntityType(
    request,
    {timeout: Number(timeout)}
  );
  const [response] = await operation.promise();

  console.log('Delete entity type response');
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
deleteEntityType();

Weitere Sprachen

Informationen zum Installieren und Verwenden des Vertex AI SDK für Python finden Sie unter Vertex AI SDK für Python verwenden. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI SDK for Python API.

Nächste Schritte