Lavorare con i dati delle serie temporali

Questo documento descrive come utilizzare le funzioni SQL per supportare l'analisi delle serie temporali.

Introduzione

Una serie temporale è una sequenza di punti dati, ciascuno costituito da un tempo e da un valore associato a quel tempo. Generalmente, una serie temporale ha un identificatore che assegna un nome univoco alla serie.

Nei database relazionali, una serie temporale viene modellata come tabella con i seguenti gruppi di colonne:

  • Colonna Data/Ora
  • Potrebbe avere colonne di partizionamento, ad esempio CAP
  • Una o più colonne di valori o un tipo STRUCT che combina più valori, ad esempio temperatura e IQA

Di seguito è riportato un esempio di dati di serie temporali modellati come tabella:

Esempio di tabella delle serie temporali.

Aggregare una serie temporale

Nell'analisi delle serie temporali, l'aggregazione temporale è un'aggregazione eseguita lungo l'asse del tempo.

Puoi eseguire l'aggregazione temporale in BigQuery con l'aiuto delle funzioni di suddivisione temporale in bucket (TIMESTAMP_BUCKET, DATE_BUCKET e DATETIME_BUCKET). Le funzioni di bucketing del tempo mappano i valori temporali di input al bucket a cui appartengono.

In genere, l'aggregazione temporale viene eseguita per combinare più punti dati in una finestra temporale in un singolo punto dati utilizzando una funzione di aggregazione, ad esempio AVG, MIN, MAX, COUNT o SUM. Ad esempio, latenza media delle richieste di 15 minuti, temperature minime e massime giornaliere e numero giornaliero di corse dei taxi.

Per le query in questa sezione, crea una tabella denominata mydataset.environmental_data_hourly:

CREATE OR REPLACE TABLE mydataset.environmental_data_hourly AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<zip_code INT64, time TIMESTAMP, aqi INT64, temperature INT64>>[
    STRUCT(60606, TIMESTAMP '2020-09-08 00:30:51', 22, 66),
    STRUCT(60606, TIMESTAMP '2020-09-08 01:32:10', 23, 63),
    STRUCT(60606, TIMESTAMP '2020-09-08 02:30:35', 22, 60),
    STRUCT(60606, TIMESTAMP '2020-09-08 03:29:39', 21, 58),
    STRUCT(60606, TIMESTAMP '2020-09-08 04:33:05', 21, 59),
    STRUCT(60606, TIMESTAMP '2020-09-08 05:32:01', 21, 57),
    STRUCT(60606, TIMESTAMP '2020-09-08 06:31:14', 22, 56),
    STRUCT(60606, TIMESTAMP '2020-09-08 07:31:06', 28, 55),
    STRUCT(60606, TIMESTAMP '2020-09-08 08:29:59', 30, 55),
    STRUCT(60606, TIMESTAMP '2020-09-08 09:29:34', 31, 55),
    STRUCT(60606, TIMESTAMP '2020-09-08 10:31:24', 38, 56),
    STRUCT(60606, TIMESTAMP '2020-09-08 11:31:24', 38, 56),
    STRUCT(60606, TIMESTAMP '2020-09-08 12:32:38', 38, 57),
    STRUCT(60606, TIMESTAMP '2020-09-08 13:29:59', 38, 56),
    STRUCT(60606, TIMESTAMP '2020-09-08 14:31:22', 43, 59),
    STRUCT(60606, TIMESTAMP '2020-09-08 15:31:38', 42, 63),
    STRUCT(60606, TIMESTAMP '2020-09-08 16:34:22', 43, 65),
    STRUCT(60606, TIMESTAMP '2020-09-08 17:33:23', 42, 68),
    STRUCT(60606, TIMESTAMP '2020-09-08 18:28:47', 36, 69),
    STRUCT(60606, TIMESTAMP '2020-09-08 19:30:28', 34, 67),
    STRUCT(60606, TIMESTAMP '2020-09-08 20:30:53', 29, 67),
    STRUCT(60606, TIMESTAMP '2020-09-08 21:32:28', 27, 67),
    STRUCT(60606, TIMESTAMP '2020-09-08 22:31:45', 25, 65),
    STRUCT(60606, TIMESTAMP '2020-09-08 23:31:02', 22, 63),
    STRUCT(94105, TIMESTAMP '2020-09-08 00:07:11', 60, 74),
    STRUCT(94105, TIMESTAMP '2020-09-08 01:07:24', 61, 73),
    STRUCT(94105, TIMESTAMP '2020-09-08 02:08:07', 60, 71),
    STRUCT(94105, TIMESTAMP '2020-09-08 03:11:05', 69, 69),
    STRUCT(94105, TIMESTAMP '2020-09-08 04:07:26', 72, 67),
    STRUCT(94105, TIMESTAMP '2020-09-08 05:08:11', 70, 66),
    STRUCT(94105, TIMESTAMP '2020-09-08 06:07:30', 68, 65),
    STRUCT(94105, TIMESTAMP '2020-09-08 07:07:10', 77, 64),
    STRUCT(94105, TIMESTAMP '2020-09-08 08:06:35', 81, 64),
    STRUCT(94105, TIMESTAMP '2020-09-08 09:10:18', 82, 63),
    STRUCT(94105, TIMESTAMP '2020-09-08 10:08:10', 107, 62),
    STRUCT(94105, TIMESTAMP '2020-09-08 11:08:01', 115, 62),
    STRUCT(94105, TIMESTAMP '2020-09-08 12:07:39', 120, 62),
    STRUCT(94105, TIMESTAMP '2020-09-08 13:06:03', 125, 61),
    STRUCT(94105, TIMESTAMP '2020-09-08 14:08:37', 129, 62),
    STRUCT(94105, TIMESTAMP '2020-09-08 15:09:19', 150, 62),
    STRUCT(94105, TIMESTAMP '2020-09-08 16:06:39', 151, 62),
    STRUCT(94105, TIMESTAMP '2020-09-08 17:08:01', 155, 63),
    STRUCT(94105, TIMESTAMP '2020-09-08 18:09:23', 154, 64),
    STRUCT(94105, TIMESTAMP '2020-09-08 19:08:43', 151, 67),
    STRUCT(94105, TIMESTAMP '2020-09-08 20:07:19', 150, 69),
    STRUCT(94105, TIMESTAMP '2020-09-08 21:07:37', 148, 72),
    STRUCT(94105, TIMESTAMP '2020-09-08 22:08:01', 143, 76),
    STRUCT(94105, TIMESTAMP '2020-09-08 23:08:41', 137, 75)
]);

Un'osservazione interessante sui dati precedenti è che le misurazioni vengono effettuate in periodi di tempo arbitrari, noti come serie temporali non allineate. L'aggregazione è uno dei modi con cui è possibile allineare una serie temporale.

Ottieni una media di 3 ore

La seguente query calcola un indice di qualità dell'aria (IQA) medio di tre ore e la temperatura per ogni codice postale. La funzione TIMESTAMP_BUCKET esegue l'aggregazione temporale assegnando ogni valore temporale a un determinato giorno.

SELECT
  TIMESTAMP_BUCKET(time, INTERVAL 3 HOUR) AS time,
  zip_code,
  CAST(AVG(aqi) AS INT64) AS aqi,
  CAST(AVG(temperature) AS INT64) AS temperature
FROM mydataset.environmental_data_hourly
GROUP BY zip_code, time
ORDER BY zip_code, time;

/*---------------------+----------+-----+-------------+
 |        time         | zip_code | aqi | temperature |
 +---------------------+----------+-----+-------------+
 | 2020-09-08 00:00:00 |    60606 |  22 |          63 |
 | 2020-09-08 03:00:00 |    60606 |  21 |          58 |
 | 2020-09-08 06:00:00 |    60606 |  27 |          55 |
 | 2020-09-08 09:00:00 |    60606 |  36 |          56 |
 | 2020-09-08 12:00:00 |    60606 |  40 |          57 |
 | 2020-09-08 15:00:00 |    60606 |  42 |          65 |
 | 2020-09-08 18:00:00 |    60606 |  33 |          68 |
 | 2020-09-08 21:00:00 |    60606 |  25 |          65 |
 | 2020-09-08 00:00:00 |    94105 |  60 |          73 |
 | 2020-09-08 03:00:00 |    94105 |  70 |          67 |
 | 2020-09-08 06:00:00 |    94105 |  75 |          64 |
 | 2020-09-08 09:00:00 |    94105 | 101 |          62 |
 | 2020-09-08 12:00:00 |    94105 | 125 |          62 |
 | 2020-09-08 15:00:00 |    94105 | 152 |          62 |
 | 2020-09-08 18:00:00 |    94105 | 152 |          67 |
 | 2020-09-08 21:00:00 |    94105 | 143 |          74 |
 +---------------------+----------+-----+-------------*/

Valore minimo e massimo di 3 ore

Nella query seguente vengono calcolate le temperature minime e massime di 3 ore per ogni codice postale:

SELECT
  TIMESTAMP_BUCKET(time, INTERVAL 3 HOUR) AS time,
  zip_code,
  MIN(temperature) AS temperature_min,
  MAX(temperature) AS temperature_max,
FROM mydataset.environmental_data_hourly
GROUP BY zip_code, time
ORDER BY zip_code, time;

/*---------------------+----------+-----------------+-----------------+
 |        time         | zip_code | temperature_min | temperature_max |
 +---------------------+----------+-----------------+-----------------+
 | 2020-09-08 00:00:00 |    60606 |              60 |              66 |
 | 2020-09-08 03:00:00 |    60606 |              57 |              59 |
 | 2020-09-08 06:00:00 |    60606 |              55 |              56 |
 | 2020-09-08 09:00:00 |    60606 |              55 |              56 |
 | 2020-09-08 12:00:00 |    60606 |              56 |              59 |
 | 2020-09-08 15:00:00 |    60606 |              63 |              68 |
 | 2020-09-08 18:00:00 |    60606 |              67 |              69 |
 | 2020-09-08 21:00:00 |    60606 |              63 |              67 |
 | 2020-09-08 00:00:00 |    94105 |              71 |              74 |
 | 2020-09-08 03:00:00 |    94105 |              66 |              69 |
 | 2020-09-08 06:00:00 |    94105 |              64 |              65 |
 | 2020-09-08 09:00:00 |    94105 |              62 |              63 |
 | 2020-09-08 12:00:00 |    94105 |              61 |              62 |
 | 2020-09-08 15:00:00 |    94105 |              62 |              63 |
 | 2020-09-08 18:00:00 |    94105 |              64 |              69 |
 | 2020-09-08 21:00:00 |    94105 |              72 |              76 |
 +---------------------+----------+-----------------+-----------------*/

Ottieni una media di 3 ore con l'allineamento personalizzato

Quando esegui l'aggregazione di serie temporali, utilizzi un allineamento specifico per le finestre delle serie temporali, in modo implicito o esplicito. Le query precedenti utilizzavano l'allineamento implicito, che generava bucket avviati a volte come 00:00:00, 03:00:00 e 06:00:00. Per impostare esplicitamente questo allineamento nella funzione TIMESTAMP_BUCKET, passa un argomento facoltativo che specifichi l'origine.

Nella query seguente, l'origine è impostata come 2020-01-01 02:00:00. Questo modifica l'allineamento e produce bucket che iniziano a orari come 02:00:00, 05:00:00 e 08:00:00:

SELECT
  TIMESTAMP_BUCKET(time, INTERVAL 3 HOUR, TIMESTAMP '2020-01-01 02:00:00') AS time,
  zip_code,
  CAST(AVG(aqi) AS INT64) AS aqi,
  CAST(AVG(temperature) AS INT64) AS temperature
FROM mydataset.environmental_data_hourly
GROUP BY zip_code, time
ORDER BY zip_code, time;

/*---------------------+----------+-----+-------------+
 |        time         | zip_code | aqi | temperature |
 +---------------------+----------+-----+-------------+
 | 2020-09-07 23:00:00 |    60606 |  23 |          65 |
 | 2020-09-08 02:00:00 |    60606 |  21 |          59 |
 | 2020-09-08 05:00:00 |    60606 |  24 |          56 |
 | 2020-09-08 08:00:00 |    60606 |  33 |          55 |
 | 2020-09-08 11:00:00 |    60606 |  38 |          56 |
 | 2020-09-08 14:00:00 |    60606 |  43 |          62 |
 | 2020-09-08 17:00:00 |    60606 |  37 |          68 |
 | 2020-09-08 20:00:00 |    60606 |  27 |          66 |
 | 2020-09-08 23:00:00 |    60606 |  22 |          63 |
 | 2020-09-07 23:00:00 |    94105 |  61 |          74 |
 | 2020-09-08 02:00:00 |    94105 |  67 |          69 |
 | 2020-09-08 05:00:00 |    94105 |  72 |          65 |
 | 2020-09-08 08:00:00 |    94105 |  90 |          63 |
 | 2020-09-08 11:00:00 |    94105 | 120 |          62 |
 | 2020-09-08 14:00:00 |    94105 | 143 |          62 |
 | 2020-09-08 17:00:00 |    94105 | 153 |          65 |
 | 2020-09-08 20:00:00 |    94105 | 147 |          72 |
 | 2020-09-08 23:00:00 |    94105 | 137 |          75 |
 +---------------------+----------+-----+-------------*/

Aggregare una serie temporale con il riempimento degli spazi vuoti

A volte, dopo aver aggregato una serie temporale, i dati potrebbero presentare lacune che devono essere riempite con alcuni valori per un'ulteriore analisi o presentazione dei dati. La tecnica utilizzata per riempire questi spazi si chiama riempimento degli spazi vuoti. In BigQuery, puoi utilizzare la funzione di tabella GAP_FILL per colmare le lacune nei dati delle serie temporali, utilizzando uno dei metodi di compilazione dei gap forniti:

  • NULL, noto anche come costante
  • LOCF, ultima osservazione riportata
  • Interpolazione lineare e lineare tra i due punti dati vicini

Per le query in questa sezione, crea una tabella denominata mydataset.environmental_data_hourly_with_gaps, che si basa sui dati utilizzati nella sezione precedente, ma che presenta lacune. Negli scenari del mondo reale, a causa di un malfunzionamento a breve termine della stazione meteorologica, potrebbero mancare punti dati.

CREATE OR REPLACE TABLE mydataset.environmental_data_hourly_with_gaps AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<zip_code INT64, time TIMESTAMP, aqi INT64, temperature INT64>>[
    STRUCT(60606, TIMESTAMP '2020-09-08 00:30:51', 22, 66),
    STRUCT(60606, TIMESTAMP '2020-09-08 01:32:10', 23, 63),
    STRUCT(60606, TIMESTAMP '2020-09-08 02:30:35', 22, 60),
    STRUCT(60606, TIMESTAMP '2020-09-08 03:29:39', 21, 58),
    STRUCT(60606, TIMESTAMP '2020-09-08 04:33:05', 21, 59),
    STRUCT(60606, TIMESTAMP '2020-09-08 05:32:01', 21, 57),
    STRUCT(60606, TIMESTAMP '2020-09-08 06:31:14', 22, 56),
    STRUCT(60606, TIMESTAMP '2020-09-08 07:31:06', 28, 55),
    STRUCT(60606, TIMESTAMP '2020-09-08 08:29:59', 30, 55),
    STRUCT(60606, TIMESTAMP '2020-09-08 09:29:34', 31, 55),
    STRUCT(60606, TIMESTAMP '2020-09-08 10:31:24', 38, 56),
    STRUCT(60606, TIMESTAMP '2020-09-08 11:31:24', 38, 56),
    -- No data points between hours 12 and 15.
    STRUCT(60606, TIMESTAMP '2020-09-08 16:34:22', 43, 65),
    STRUCT(60606, TIMESTAMP '2020-09-08 17:33:23', 42, 68),
    STRUCT(60606, TIMESTAMP '2020-09-08 18:28:47', 36, 69),
    STRUCT(60606, TIMESTAMP '2020-09-08 19:30:28', 34, 67),
    STRUCT(60606, TIMESTAMP '2020-09-08 20:30:53', 29, 67),
    STRUCT(60606, TIMESTAMP '2020-09-08 21:32:28', 27, 67),
    STRUCT(60606, TIMESTAMP '2020-09-08 22:31:45', 25, 65),
    STRUCT(60606, TIMESTAMP '2020-09-08 23:31:02', 22, 63),
    STRUCT(94105, TIMESTAMP '2020-09-08 00:07:11', 60, 74),
    STRUCT(94105, TIMESTAMP '2020-09-08 01:07:24', 61, 73),
    STRUCT(94105, TIMESTAMP '2020-09-08 02:08:07', 60, 71),
    STRUCT(94105, TIMESTAMP '2020-09-08 03:11:05', 69, 69),
    STRUCT(94105, TIMESTAMP '2020-09-08 04:07:26', 72, 67),
    STRUCT(94105, TIMESTAMP '2020-09-08 05:08:11', 70, 66),
    STRUCT(94105, TIMESTAMP '2020-09-08 06:07:30', 68, 65),
    STRUCT(94105, TIMESTAMP '2020-09-08 07:07:10', 77, 64),
    STRUCT(94105, TIMESTAMP '2020-09-08 08:06:35', 81, 64),
    STRUCT(94105, TIMESTAMP '2020-09-08 09:10:18', 82, 63),
    STRUCT(94105, TIMESTAMP '2020-09-08 10:08:10', 107, 62),
    STRUCT(94105, TIMESTAMP '2020-09-08 11:08:01', 115, 62),
    STRUCT(94105, TIMESTAMP '2020-09-08 12:07:39', 120, 62),
    STRUCT(94105, TIMESTAMP '2020-09-08 13:06:03', 125, 61),
    STRUCT(94105, TIMESTAMP '2020-09-08 14:08:37', 129, 62),
    -- No data points between hours 15 and 18.
    STRUCT(94105, TIMESTAMP '2020-09-08 19:08:43', 151, 67),
    STRUCT(94105, TIMESTAMP '2020-09-08 20:07:19', 150, 69),
    STRUCT(94105, TIMESTAMP '2020-09-08 21:07:37', 148, 72),
    STRUCT(94105, TIMESTAMP '2020-09-08 22:08:01', 143, 76),
    STRUCT(94105, TIMESTAMP '2020-09-08 23:08:41', 137, 75)
]);

Ottieni una media di 3 ore (incluse lacune)

La seguente query calcola l'IQA e la temperatura medi di tre ore per ogni codice postale:

SELECT
  TIMESTAMP_BUCKET(time, INTERVAL 3 HOUR) AS time,
  zip_code,
  CAST(AVG(aqi) AS INT64) AS aqi,
  CAST(AVG(temperature) AS INT64) AS temperature
FROM mydataset.environmental_data_hourly_with_gaps
GROUP BY zip_code, time
ORDER BY zip_code, time;

/*---------------------+----------+-----+-------------+
 |        time         | zip_code | aqi | temperature |
 +---------------------+----------+-----+-------------+
 | 2020-09-08 00:00:00 |    60606 |  22 |          63 |
 | 2020-09-08 03:00:00 |    60606 |  21 |          58 |
 | 2020-09-08 06:00:00 |    60606 |  27 |          55 |
 | 2020-09-08 09:00:00 |    60606 |  36 |          56 |
 | 2020-09-08 15:00:00 |    60606 |  43 |          67 |
 | 2020-09-08 18:00:00 |    60606 |  33 |          68 |
 | 2020-09-08 21:00:00 |    60606 |  25 |          65 |
 | 2020-09-08 00:00:00 |    94105 |  60 |          73 |
 | 2020-09-08 03:00:00 |    94105 |  70 |          67 |
 | 2020-09-08 06:00:00 |    94105 |  75 |          64 |
 | 2020-09-08 09:00:00 |    94105 | 101 |          62 |
 | 2020-09-08 12:00:00 |    94105 | 125 |          62 |
 | 2020-09-08 18:00:00 |    94105 | 151 |          68 |
 | 2020-09-08 21:00:00 |    94105 | 143 |          74 |
 +---------------------+----------+-----+-------------*/

Nota come l'output presenti lacune a determinati intervalli di tempo. Ad esempio, la serie temporale per il codice postale 60606 non ha un punto dati in corrispondenza di 2020-09-08 12:00:00 e la serie temporale per il codice postale 94105 non ha un punto dati 2020-09-08 15:00:00.

Ottieni una media di 3 ore (colma le lacune)

Utilizza la query della sezione precedente e aggiungi la funzione GAP_FILL per colmare gli spazi vuoti:

WITH aggregated_3_hr AS (
  SELECT
    TIMESTAMP_BUCKET(time, INTERVAL 3 HOUR) AS time,
    zip_code,
    CAST(AVG(aqi) AS INT64) AS aqi,
    CAST(AVG(temperature) AS INT64) AS temperature
   FROM mydataset.environmental_data_hourly_with_gaps
   GROUP BY zip_code, time)

SELECT *
FROM GAP_FILL(
  TABLE aggregated_3_hr,
  ts_column => 'time',
  bucket_width => INTERVAL 3 HOUR,
  partitioning_columns => ['zip_code']
)
ORDER BY zip_code, time;

/*---------------------+----------+------+-------------+
 |        time         | zip_code | aqi  | temperature |
 +---------------------+----------+------+-------------+
 | 2020-09-08 00:00:00 |    60606 |   22 |          63 |
 | 2020-09-08 03:00:00 |    60606 |   21 |          58 |
 | 2020-09-08 06:00:00 |    60606 |   27 |          55 |
 | 2020-09-08 09:00:00 |    60606 |   36 |          56 |
 | 2020-09-08 12:00:00 |    60606 | NULL |        NULL |
 | 2020-09-08 15:00:00 |    60606 |   43 |          67 |
 | 2020-09-08 18:00:00 |    60606 |   33 |          68 |
 | 2020-09-08 21:00:00 |    60606 |   25 |          65 |
 | 2020-09-08 00:00:00 |    94105 |   60 |          73 |
 | 2020-09-08 03:00:00 |    94105 |   70 |          67 |
 | 2020-09-08 06:00:00 |    94105 |   75 |          64 |
 | 2020-09-08 09:00:00 |    94105 |  101 |          62 |
 | 2020-09-08 12:00:00 |    94105 |  125 |          62 |
 | 2020-09-08 15:00:00 |    94105 | NULL |        NULL |
 | 2020-09-08 18:00:00 |    94105 |  151 |          68 |
 | 2020-09-08 21:00:00 |    94105 |  143 |          74 |
 +---------------------+----------+------+-------------*/

La tabella di output ora contiene una riga mancante in 2020-09-08 12:00:00 per il codice postale 60606 e in 2020-09-08 15:00:00 per il codice postale 94105, con NULL valori nelle colonne delle metriche corrispondenti. Poiché non hai specificato alcun metodo di riempimento, GAP_FILL ha usato il metodo di riempimento predefinito, NULL.

Riempi gli spazi vuoti con il sistema lineare e gli spazi vuoti LOCF

Nella query seguente, la funzione GAP_FILL viene utilizzata con il metodo di gap filling LOCF per la colonna aqi e l'interpolazione lineare per la colonna temperature:

WITH aggregated_3_hr AS (
  SELECT
    TIMESTAMP_BUCKET(time, INTERVAL 3 HOUR) AS time,
    zip_code,
    CAST(AVG(aqi) AS INT64) AS aqi,
    CAST(AVG(temperature) AS INT64) AS temperature
   FROM mydataset.environmental_data_hourly_with_gaps
   GROUP BY zip_code, time)

SELECT *
FROM GAP_FILL(
  TABLE aggregated_3_hr,
  ts_column => 'time',
  bucket_width => INTERVAL 3 HOUR,
  partitioning_columns => ['zip_code'],
  value_columns => [
    ('aqi', 'locf'),
    ('temperature', 'linear')
  ]
)
ORDER BY zip_code, time;

/*---------------------+----------+-----+-------------+
 |        time         | zip_code | aqi | temperature |
 +---------------------+----------+-----+-------------+
 | 2020-09-08 00:00:00 |    60606 |  22 |          63 |
 | 2020-09-08 03:00:00 |    60606 |  21 |          58 |
 | 2020-09-08 06:00:00 |    60606 |  27 |          55 |
 | 2020-09-08 09:00:00 |    60606 |  36 |          56 |
 | 2020-09-08 12:00:00 |    60606 |  36 |          62 |
 | 2020-09-08 15:00:00 |    60606 |  43 |          67 |
 | 2020-09-08 18:00:00 |    60606 |  33 |          68 |
 | 2020-09-08 21:00:00 |    60606 |  25 |          65 |
 | 2020-09-08 00:00:00 |    94105 |  60 |          73 |
 | 2020-09-08 03:00:00 |    94105 |  70 |          67 |
 | 2020-09-08 06:00:00 |    94105 |  75 |          64 |
 | 2020-09-08 09:00:00 |    94105 | 101 |          62 |
 | 2020-09-08 12:00:00 |    94105 | 125 |          62 |
 | 2020-09-08 15:00:00 |    94105 | 125 |          65 |
 | 2020-09-08 18:00:00 |    94105 | 151 |          68 |
 | 2020-09-08 21:00:00 |    94105 | 143 |          74 |
 +---------------------+----------+-----+-------------*/

In questa query, la prima riga piena di spazi vuoti ha il valore 36 aqi, che viene recuperato dal punto dati precedente di questa serie temporale (codice postale 60606) in corrispondenza di 2020-09-08 09:00:00. Il valore 62 di temperature è il risultato dell'interpolazione lineare tra i punti dati 2020-09-08 09:00:00 e 2020-09-08 15:00:00. L'altra riga mancante è stata creata in modo simile: il valore 125 di aqi è stato trasferito dal punto dati precedente di questa serie temporale (codice postale 94105) e il valore di temperatura 65 è il risultato dell'interpolazione lineare tra i punti dati disponibili precedente e successivo.

Allineare una serie temporale con il riempimento degli spazi vuoti

Le serie temporali possono essere allineate o non allineate. Una serie temporale è allineata quando i punti dati si verificano solo a intervalli regolari.

Nel mondo reale, al momento della raccolta, le serie temporali raramente sono allineate e di solito richiedono ulteriori elaborazioni per allinearle.

Ad esempio, considera i dispositivi IoT che inviano le metriche a un raccoglitore centralizzato ogni minuto. Sarebbe irragionevole aspettarsi che i dispositivi inviino le metriche esattamente agli stessi momenti. Di solito, ogni dispositivo invia le proprie metriche con la stessa frequenza (periodo), ma con un offset temporale diverso (allineamento). Il seguente diagramma illustra questo esempio. Puoi vedere che ogni dispositivo invia i propri dati con un intervallo di un minuto con alcune istanze di dati mancanti (Dispositivo 3 alle ore 9:36:39) e di dati in ritardo (Dispositivo 1 alle ore 9:37:28).

Esempio di allineamento delle serie temporali

Puoi eseguire l'allineamento delle serie temporali su dati non allineati utilizzando l'aggregazione temporale. Ciò è utile se vuoi modificare il periodo di campionamento della serie temporale, ad esempio passando dal periodo di campionamento originale di 1 minuto a un periodo di 15 minuti. Puoi allineare i dati per un'ulteriore elaborazione delle serie temporali, ad esempio per unire i dati delle serie temporali, o per scopi di visualizzazione (ad esempio la creazione di grafici).

Puoi utilizzare la funzione tabella GAP_FILL con i metodi LOCF o di riempimento lineare per eseguire l'allineamento delle serie temporali. L'idea è utilizzare GAP_FILL con il periodo di output e l'allineamento selezionati (controllati dall'argomento Origine facoltativo). Il risultato dell'operazione è una tabella con serie temporali allineate, in cui i valori per ogni punto dati derivano dalla serie temporale di input con il metodo di riempimento degli spazi vuoti utilizzato per quella particolare colonna di valori (LOCF dei lineari).

Crea una tabella mydataset.device_data, simile all'illustrazione precedente:

CREATE OR REPLACE TABLE mydataset.device_data AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<device_id INT64, time TIMESTAMP, signal INT64, state STRING>>[
    STRUCT(2, TIMESTAMP '2023-11-01 09:35:07', 87, 'ACTIVE'),
    STRUCT(1, TIMESTAMP '2023-11-01 09:35:26', 82, 'ACTIVE'),
    STRUCT(3, TIMESTAMP '2023-11-01 09:35:39', 74, 'INACTIVE'),
    STRUCT(2, TIMESTAMP '2023-11-01 09:36:07', 88, 'ACTIVE'),
    STRUCT(1, TIMESTAMP '2023-11-01 09:36:26', 82, 'ACTIVE'),
    STRUCT(2, TIMESTAMP '2023-11-01 09:37:07', 88, 'ACTIVE'),
    STRUCT(1, TIMESTAMP '2023-11-01 09:37:28', 80, 'ACTIVE'),
    STRUCT(3, TIMESTAMP '2023-11-01 09:37:39', 77, 'ACTIVE'),
    STRUCT(2, TIMESTAMP '2023-11-01 09:38:07', 86, 'ACTIVE'),
    STRUCT(1, TIMESTAMP '2023-11-01 09:38:26', 81, 'ACTIVE'),
    STRUCT(3, TIMESTAMP '2023-11-01 09:38:39', 77, 'ACTIVE')
]);

Di seguito sono riportati i dati effettivi ordinati in base alle colonne time e device_id:

SELECT * FROM mydataset.device_data ORDER BY time, device_id;

/*-----------+---------------------+--------+----------+
 | device_id |        time         | signal |  state   |
 +-----------+---------------------+--------+----------+
 |         2 | 2023-11-01 09:35:07 |     87 | ACTIVE   |
 |         1 | 2023-11-01 09:35:26 |     82 | ACTIVE   |
 |         3 | 2023-11-01 09:35:39 |     74 | INACTIVE |
 |         2 | 2023-11-01 09:36:07 |     88 | ACTIVE   |
 |         1 | 2023-11-01 09:36:26 |     82 | ACTIVE   |
 |         2 | 2023-11-01 09:37:07 |     88 | ACTIVE   |
 |         1 | 2023-11-01 09:37:28 |     80 | ACTIVE   |
 |         3 | 2023-11-01 09:37:39 |     77 | ACTIVE   |
 |         2 | 2023-11-01 09:38:07 |     86 | ACTIVE   |
 |         1 | 2023-11-01 09:38:26 |     81 | ACTIVE   |
 |         3 | 2023-11-01 09:38:39 |     77 | ACTIVE   |
 +-----------+---------------------+--------+----------*/

La tabella contiene le serie temporali per ogni dispositivo con due colonne di metriche:

  • signal: livello del segnale osservato dal dispositivo al momento del campionamento, rappresentato come un valore intero compreso tra 0 e 100.
  • state: stato del dispositivo al momento del campionamento, rappresentato come una stringa in formato libero.

Nella query seguente, viene utilizzata la funzione GAP_FILL per allineare le serie temporali a intervalli di 1 minuto. Nota come l'interpolazione lineare viene utilizzata per calcolare i valori per la colonna signal e LOCF per la colonna state. Per questi dati di esempio, l'interpolazione lineare è una scelta adatta per calcolare i valori di output.

SELECT *
FROM GAP_FILL(
  TABLE mydataset.device_data,
  ts_column => 'time',
  bucket_width => INTERVAL 1 MINUTE,
  partitioning_columns => ['device_id'],
  value_columns => [
    ('signal', 'linear'),
    ('state', 'locf')
  ]
)
ORDER BY time, device_id;

 /*---------------------+-----------+--------+----------+
 |        time         | device_id | signal |  state   |
 +---------------------+-----------+--------+----------+
 | 2023-11-01 09:36:00 |         1 |     82 | ACTIVE   |
 | 2023-11-01 09:36:00 |         2 |     88 | ACTIVE   |
 | 2023-11-01 09:36:00 |         3 |     75 | INACTIVE |
 | 2023-11-01 09:37:00 |         1 |     81 | ACTIVE   |
 | 2023-11-01 09:37:00 |         2 |     88 | ACTIVE   |
 | 2023-11-01 09:37:00 |         3 |     76 | INACTIVE |
 | 2023-11-01 09:38:00 |         1 |     81 | ACTIVE   |
 | 2023-11-01 09:38:00 |         2 |     86 | ACTIVE   |
 | 2023-11-01 09:38:00 |         3 |     77 | ACTIVE   |
 +---------------------+-----------+--------+----------*/

La tabella di output contiene una serie temporale allineata per ogni dispositivo e le colonne dei valori (signal e state), calcolate utilizzando i metodi di riempimento degli spazi vuoti specificati nella chiamata di funzione.

Unire i dati delle serie temporali

Puoi unire i dati delle serie temporali utilizzando un join con finestra o AS OF.

Unione con finestra

A volte devi unire due o più tabelle ai dati delle serie temporali. Considera le due tabelle seguenti:

  • mydataset.sensor_temperatures, contiene i dati di temperatura riportati da ciascun sensore ogni 15 secondi.
  • mydataset.sensor_fuel_rates, contiene la percentuale di consumo di carburante misurata da ciascun sensore ogni 15 secondi.

Per creare queste tabelle, esegui queste query:

CREATE OR REPLACE TABLE mydataset.sensor_temperatures AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<sensor_id INT64, ts TIMESTAMP, temp FLOAT64>>[
  (1, TIMESTAMP '2020-01-01 12:00:00.063', 37.1),
  (1, TIMESTAMP '2020-01-01 12:00:15.024', 37.2),
  (1, TIMESTAMP '2020-01-01 12:00:30.032', 37.3),
  (2, TIMESTAMP '2020-01-01 12:00:01.001', 38.1),
  (2, TIMESTAMP '2020-01-01 12:00:15.082', 38.2),
  (2, TIMESTAMP '2020-01-01 12:00:31.009', 38.3)
]);

CREATE OR REPLACE TABLE mydataset.sensor_fuel_rates AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<sensor_id INT64, ts TIMESTAMP, rate FLOAT64>>[
    (1, TIMESTAMP '2020-01-01 12:00:11.016', 10.1),
    (1, TIMESTAMP '2020-01-01 12:00:26.015', 10.2),
    (1, TIMESTAMP '2020-01-01 12:00:41.014', 10.3),
    (2, TIMESTAMP '2020-01-01 12:00:08.099', 11.1),
    (2, TIMESTAMP '2020-01-01 12:00:23.087', 11.2),
    (2, TIMESTAMP '2020-01-01 12:00:38.077', 11.3)
]);

Di seguito sono riportati i dati effettivi delle tabelle:

SELECT * FROM mydataset.sensor_temperatures ORDER BY sensor_id, ts;

 /*-----------+---------------------+------+
 | sensor_id |         ts          | temp |
 +-----------+---------------------+------+
 |         1 | 2020-01-01 12:00:00 | 37.1 |
 |         1 | 2020-01-01 12:00:15 | 37.2 |
 |         1 | 2020-01-01 12:00:30 | 37.3 |
 |         2 | 2020-01-01 12:00:01 | 38.1 |
 |         2 | 2020-01-01 12:00:15 | 38.2 |
 |         2 | 2020-01-01 12:00:31 | 38.3 |
 +-----------+---------------------+------*/

SELECT * FROM mydataset.sensor_fuel_rates ORDER BY sensor_id, ts;

 /*-----------+---------------------+------+
 | sensor_id |         ts          | rate |
 +-----------+---------------------+------+
 |         1 | 2020-01-01 12:00:11 | 10.1 |
 |         1 | 2020-01-01 12:00:26 | 10.2 |
 |         1 | 2020-01-01 12:00:41 | 10.3 |
 |         2 | 2020-01-01 12:00:08 | 11.1 |
 |         2 | 2020-01-01 12:00:23 | 11.2 |
 |         2 | 2020-01-01 12:00:38 | 11.3 |
 +-----------+---------------------+------*/

Per controllare la percentuale di consumo di carburante alla temperatura riportata da ciascun sensore, puoi unire le due serie temporali.

Anche se i dati nelle due serie temporali non sono allineati, vengono campionati nello stesso intervallo (15 secondi), pertanto sono adatti per il join con finestra. Utilizza le funzioni di bucketing dell'ora per allineare i timestamp utilizzati come chiavi di join.

Le seguenti query illustrano come ogni timestamp può essere assegnato a finestre di 15 secondi utilizzando la funzione TIMESTAMP_BUCKET:

SELECT *, TIMESTAMP_BUCKET(ts, INTERVAL 15 SECOND) ts_window
FROM mydataset.sensor_temperatures
ORDER BY sensor_id, ts;

/*-----------+---------------------+------+---------------------+
 | sensor_id |         ts          | temp |      ts_window      |
 +-----------+---------------------+------+---------------------+
 |         1 | 2020-01-01 12:00:00 | 37.1 | 2020-01-01 12:00:00 |
 |         1 | 2020-01-01 12:00:15 | 37.2 | 2020-01-01 12:00:15 |
 |         1 | 2020-01-01 12:00:30 | 37.3 | 2020-01-01 12:00:30 |
 |         2 | 2020-01-01 12:00:01 | 38.1 | 2020-01-01 12:00:00 |
 |         2 | 2020-01-01 12:00:15 | 38.2 | 2020-01-01 12:00:15 |
 |         2 | 2020-01-01 12:00:31 | 38.3 | 2020-01-01 12:00:30 |
 +-----------+---------------------+------+---------------------*/

SELECT *, TIMESTAMP_BUCKET(ts, INTERVAL 15 SECOND) ts_window
FROM mydataset.sensor_fuel_rates
ORDER BY sensor_id, ts;

/*-----------+---------------------+------+---------------------+
 | sensor_id |         ts          | rate |      ts_window      |
 +-----------+---------------------+------+---------------------+
 |         1 | 2020-01-01 12:00:11 | 10.1 | 2020-01-01 12:00:00 |
 |         1 | 2020-01-01 12:00:26 | 10.2 | 2020-01-01 12:00:15 |
 |         1 | 2020-01-01 12:00:41 | 10.3 | 2020-01-01 12:00:30 |
 |         2 | 2020-01-01 12:00:08 | 11.1 | 2020-01-01 12:00:00 |
 |         2 | 2020-01-01 12:00:23 | 11.2 | 2020-01-01 12:00:15 |
 |         2 | 2020-01-01 12:00:38 | 11.3 | 2020-01-01 12:00:30 |
 +-----------+---------------------+------+---------------------*/

Puoi utilizzare questo concetto per unire i dati sulla percentuale di consumo di carburante con la temperatura riportata da ciascun sensore:

SELECT
  t1.sensor_id AS sensor_id,
  t1.ts AS temp_ts,
  t1.temp AS temp,
  t2.ts AS rate_ts,
  t2.rate AS rate
FROM mydataset.sensor_temperatures t1
LEFT JOIN mydataset.sensor_fuel_rates t2
ON TIMESTAMP_BUCKET(t1.ts, INTERVAL 15 SECOND) =
     TIMESTAMP_BUCKET(t2.ts, INTERVAL 15 SECOND)
   AND t1.sensor_id = t2.sensor_id
ORDER BY sensor_id, temp_ts;

/*-----------+---------------------+------+---------------------+------+
 | sensor_id |       temp_ts       | temp |       rate_ts       | rate |
 +-----------+---------------------+------+---------------------+------+
 |         1 | 2020-01-01 12:00:00 | 37.1 | 2020-01-01 12:00:11 | 10.1 |
 |         1 | 2020-01-01 12:00:15 | 37.2 | 2020-01-01 12:00:26 | 10.2 |
 |         1 | 2020-01-01 12:00:30 | 37.3 | 2020-01-01 12:00:41 | 10.3 |
 |         2 | 2020-01-01 12:00:01 | 38.1 | 2020-01-01 12:00:08 | 11.1 |
 |         2 | 2020-01-01 12:00:15 | 38.2 | 2020-01-01 12:00:23 | 11.2 |
 |         2 | 2020-01-01 12:00:31 | 38.3 | 2020-01-01 12:00:38 | 11.3 |
 +-----------+---------------------+------+---------------------+------*/

Partecipa con AS OF

Per questa sezione, utilizza la tabella mydataset.sensor_temperatures e crea una nuova tabella, mydataset.sensor_location.

La tabella mydataset.sensor_temperatures contiene dati di temperatura provenienti da diversi sensori, riportati ogni 15 secondi:

SELECT * FROM mydataset.sensor_temperatures ORDER BY sensor_id, ts;

/*-----------+---------------------+------+
 | sensor_id |         ts          | temp |
 +-----------+---------------------+------+
 |         1 | 2020-01-01 12:00:00 | 37.1 |
 |         1 | 2020-01-01 12:00:15 | 37.2 |
 |         1 | 2020-01-01 12:00:30 | 37.3 |
 |         2 | 2020-01-01 12:00:45 | 38.1 |
 |         2 | 2020-01-01 12:01:01 | 38.2 |
 |         2 | 2020-01-01 12:01:15 | 38.3 |
 +-----------+---------------------+------*/

Per creare mydataset.sensor_location, esegui questa query:

CREATE OR REPLACE TABLE mydataset.sensor_locations AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<sensor_id INT64, ts TIMESTAMP, location GEOGRAPHY>>[
  (1, TIMESTAMP '2020-01-01 11:59:47.063', ST_GEOGPOINT(-122.022, 37.406)),
  (1, TIMESTAMP '2020-01-01 12:00:08.185', ST_GEOGPOINT(-122.021, 37.407)),
  (1, TIMESTAMP '2020-01-01 12:00:28.032', ST_GEOGPOINT(-122.020, 37.405)),
  (2, TIMESTAMP '2020-01-01 07:28:41.239', ST_GEOGPOINT(-122.390, 37.790))
]);

/*-----------+---------------------+------------------------+
 | sensor_id |         ts          |        location        |
 +-----------+---------------------+------------------------+
 |         1 | 2020-01-01 11:59:47 | POINT(-122.022 37.406) |
 |         1 | 2020-01-01 12:00:08 | POINT(-122.021 37.407) |
 |         1 | 2020-01-01 12:00:28 |  POINT(-122.02 37.405) |
 |         2 | 2020-01-01 07:28:41 |   POINT(-122.39 37.79) |
 +-----------+---------------------+------------------------*/

Ora unisci i dati di mydataset.sensor_temperatures con i dati di mydataset.sensor_location.

In questo scenario, non puoi utilizzare un join con finestra, poiché i dati sulla temperatura e la data della posizione non vengono riportati con lo stesso intervallo.

Un modo per farlo in BigQuery è trasformare i dati del timestamp in un intervallo, utilizzando il tipo di dati RANGE. L'intervallo rappresenta la validità temporale di una riga, fornendo l'ora di inizio e di fine per le quali la riga è valida.

Utilizza la funzione finestra LEAD per trovare il punto dati successivo nella serie temporale, rispetto al punto dati attuale, che è anche il limite finale della validità temporale della riga corrente. Le seguenti query lo dimostrano, convertendo i dati sulla posizione in intervalli di validità:

WITH locations_ranges AS (
  SELECT
    sensor_id,
    RANGE(ts, LEAD(ts) OVER (PARTITION BY sensor_id ORDER BY ts ASC)) AS ts_range,
    location
  FROM mydataset.sensor_locations
)
SELECT * FROM locations_ranges ORDER BY sensor_id, ts_range;

/*-----------+--------------------------------------------+------------------------+
 | sensor_id |                  ts_range                  |        location        |
 +-----------+--------------------------------------------+------------------------+
 |         1 | [2020-01-01 11:59:47, 2020-01-01 12:00:08) | POINT(-122.022 37.406) |
 |         1 | [2020-01-01 12:00:08, 2020-01-01 12:00:28) | POINT(-122.021 37.407) |
 |         1 |           [2020-01-01 12:00:28, UNBOUNDED) |  POINT(-122.02 37.405) |
 |         2 |           [2020-01-01 07:28:41, UNBOUNDED) |   POINT(-122.39 37.79) |
 +-----------+--------------------------------------------+------------------------*/

Ora puoi unire i dati sulle temperature (a sinistra) ai dati sulla posizione (a destra):

WITH locations_ranges AS (
  SELECT
    sensor_id,
    RANGE(ts, LEAD(ts) OVER (PARTITION BY sensor_id ORDER BY ts ASC)) AS ts_range,
    location
  FROM mydataset.sensor_locations
)
SELECT
  t1.sensor_id AS sensor_id,
  t1.ts AS temp_ts,
  t1.temp AS temp,
  t2.location AS location
FROM mydataset.sensor_temperatures t1
LEFT JOIN locations_ranges t2
ON RANGE_CONTAINS(t2.ts_range, t1.ts)
AND t1.sensor_id = t2.sensor_id
ORDER BY sensor_id, temp_ts;

/*-----------+---------------------+------+------------------------+
 | sensor_id |       temp_ts       | temp |        location        |
 +-----------+---------------------+------+------------------------+
 |         1 | 2020-01-01 12:00:00 | 37.1 | POINT(-122.022 37.406) |
 |         1 | 2020-01-01 12:00:15 | 37.2 | POINT(-122.021 37.407) |
 |         1 | 2020-01-01 12:00:30 | 37.3 |  POINT(-122.02 37.405) |
 |         2 | 2020-01-01 12:00:01 | 38.1 |   POINT(-122.39 37.79) |
 |         2 | 2020-01-01 12:00:15 | 38.2 |   POINT(-122.39 37.79) |
 |         2 | 2020-01-01 12:00:31 | 38.3 |   POINT(-122.39 37.79) |
 +-----------+---------------------+------+------------------------*/

Combinare e suddividere i dati dell'intervallo

In questa sezione, combina i dati di intervallo che hanno intervalli sovrapposti e suddividi i dati in intervalli più piccoli.

Combina i dati dell'intervallo

Le tabelle con valori di intervallo potrebbero avere intervalli sovrapposti. Nella seguente query, gli intervalli di tempo acquisiscono lo stato dei sensori a intervalli di circa 5 minuti:

CREATE OR REPLACE TABLE mydataset.sensor_metrics AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<sensor_id INT64, duration RANGE<DATETIME>, flow INT64, spins INT64>>[
  (1, RANGE<DATETIME> "[2020-01-01 12:00:01, 2020-01-01 12:05:23)", 10, 1),
  (1, RANGE<DATETIME> "[2020-01-01 12:05:12, 2020-01-01 12:10:46)", 10, 20),
  (1, RANGE<DATETIME> "[2020-01-01 12:10:27, 2020-01-01 12:15:56)", 11, 4),
  (1, RANGE<DATETIME> "[2020-01-01 12:16:00, 2020-01-01 12:20:58)", 11, 9),
  (1, RANGE<DATETIME> "[2020-01-01 12:20:33, 2020-01-01 12:25:08)", 11, 8),
  (2, RANGE<DATETIME> "[2020-01-01 12:00:19, 2020-01-01 12:05:08)", 21, 31),
  (2, RANGE<DATETIME> "[2020-01-01 12:05:08, 2020-01-01 12:10:30)", 21, 2),
  (2, RANGE<DATETIME> "[2020-01-01 12:10:22, 2020-01-01 12:15:42)", 21, 10)
]);

La seguente query nella tabella mostra diversi intervalli che si sovrappongono:

SELECT * FROM mydataset.sensor_metrics;

/*-----------+--------------------------------------------+------+-------+
 | sensor_id |                  duration                  | flow | spins |
 +-----------+--------------------------------------------+------+-------+
 |         1 | [2020-01-01 12:00:01, 2020-01-01 12:05:23) | 10   |     1 |
 |         1 | [2020-01-01 12:05:12, 2020-01-01 12:10:46) | 10   |    20 |
 |         1 | [2020-01-01 12:10:27, 2020-01-01 12:15:56) | 11   |     4 |
 |         1 | [2020-01-01 12:16:00, 2020-01-01 12:20:58) | 11   |     9 |
 |         1 | [2020-01-01 12:20:33, 2020-01-01 12:25:08) | 11   |     8 |
 |         2 | [2020-01-01 12:00:19, 2020-01-01 12:05:08) | 21   |    31 |
 |         2 | [2020-01-01 12:05:08, 2020-01-01 12:10:30) | 21   |     2 |
 |         2 | [2020-01-01 12:10:22, 2020-01-01 12:15:42) | 21   |    10 |
 +-----------+--------------------------------------------+------+-------*/

Per alcuni degli intervalli sovrapposti, il valore nella colonna flow è lo stesso. Ad esempio, le righe 1 e 2 si sovrappongono e hanno le stesse letture di flow. Puoi combinare queste due righe per ridurre il numero di righe nella tabella. Puoi utilizzare la funzione di tabella RANGE_SESSIONIZE per trovare gli intervalli che si sovrappongono a ogni riga e fornire una colonna session_range aggiuntiva contenente un intervallo che sia l'unione di tutti gli intervalli che si sovrappongono. Per visualizzare gli intervalli di sessioni per ogni riga, esegui questa query:

SELECT sensor_id, session_range, flow
FROM RANGE_SESSIONIZE(
  # Input data.
  (SELECT sensor_id, duration, flow FROM mydataset.sensor_metrics),
  # Range column.
  "duration",
  # Partitioning columns. Ranges are sessionized only within these partitions.
  ["sensor_id", "flow"],
  # Sessionize mode.
  "OVERLAPS")
ORDER BY sensor_id, session_range;

/*-----------+--------------------------------------------+------+
 | sensor_id |                session_range               | flow |
 +-----------+--------------------------------------------+------+
 |         1 | [2020-01-01 12:00:01, 2020-01-01 12:10:46) | 10   |
 |         1 | [2020-01-01 12:00:01, 2020-01-01 12:10:46) | 10   |
 |         1 | [2020-01-01 12:10:27, 2020-01-01 12:15:56) | 11   |
 |         1 | [2020-01-01 12:16:00, 2020-01-01 12:25:08) | 11   |
 |         1 | [2020-01-01 12:16:00, 2020-01-01 12:25:08) | 11   |
 |         2 | [2020-01-01 12:00:19, 2020-01-01 12:05:08) | 21   |
 |         2 | [2020-01-01 12:05:08, 2020-01-01 12:15:42) | 21   |
 |         2 | [2020-01-01 12:05:08, 2020-01-01 12:15:42) | 21   |
 +-----------+--------------------------------------------+------*/

Tieni presente che per sensor_id con valore 2, il limite di fine della prima riga ha lo stesso valore data/ora del limite iniziale della seconda riga. Tuttavia, poiché i confini finali sono esclusivi, non si sovrappongono (si incontrano solo) e quindi non rientrano negli stessi intervalli di sessioni. Se vuoi inserire queste due righe negli stessi intervalli di sessioni, utilizza la modalità di sessione MEETS.

Per combinare gli intervalli, raggruppa i risultati per session_range e le colonne di partizionamento (sensor_id e flow):

SELECT sensor_id, session_range, flow
FROM RANGE_SESSIONIZE(
  (SELECT sensor_id, duration, flow FROM mydataset.sensor_metrics),
  "duration",
  ["sensor_id", "flow"],
  "OVERLAPS")
GROUP BY sensor_id, session_range, flow
ORDER BY sensor_id, session_range;

/*-----------+--------------------------------------------+------+
 | sensor_id |                session_range               | flow |
 +-----------+--------------------------------------------+------+
 |         1 | [2020-01-01 12:00:01, 2020-01-01 12:10:46) | 10   |
 |         1 | [2020-01-01 12:10:27, 2020-01-01 12:15:56) | 11   |
 |         1 | [2020-01-01 12:16:00, 2020-01-01 12:25:08) | 11   |
 |         2 | [2020-01-01 12:00:19, 2020-01-01 12:05:08) | 21   |
 |         2 | [2020-01-01 12:05:08, 2020-01-01 12:15:42) | 21   |
 +-----------+--------------------------------------------+------*/

Infine, aggiungi la colonna spins ai dati della sessione aggregandoli con SUM.

SELECT sensor_id, session_range, flow, SUM(spins) as spins
FROM RANGE_SESSIONIZE(
  TABLE mydataset.sensor_metrics,
  "duration",
  ["sensor_id", "flow"],
  "OVERLAPS")
GROUP BY sensor_id, session_range, flow
ORDER BY sensor_id, session_range;

/*-----------+--------------------------------------------+------+-------+
 | sensor_id |                session_range               | flow | spins |
 +-----------+--------------------------------------------+------+-------+
 |         1 | [2020-01-01 12:00:01, 2020-01-01 12:10:46) | 10   |    21 |
 |         1 | [2020-01-01 12:10:27, 2020-01-01 12:15:56) | 11   |     4 |
 |         1 | [2020-01-01 12:16:00, 2020-01-01 12:25:08) | 11   |    17 |
 |         2 | [2020-01-01 12:00:19, 2020-01-01 12:05:08) | 21   |    31 |
 |         2 | [2020-01-01 12:05:08, 2020-01-01 12:15:42) | 21   |    12 |
 +-----------+--------------------------------------------+------+-------*/

Suddividi i dati dell'intervallo

Puoi anche suddividere un intervallo in intervalli più piccoli. Per questo esempio, utilizza la seguente tabella con dati di intervallo:

/*-----------+--------------------------+------+-------+
 | sensor_id |         duration         | flow | spins |
 +-----------+--------------------------+------+-------+
 |         1 | [2020-01-01, 2020-12-31) | 10   |    21 |
 |         1 | [2021-01-01, 2021-12-31) | 11   |     4 |
 |         2 | [2020-04-15, 2021-04-15) | 21   |    31 |
 |         2 | [2021-04-15, 2021-04-15) | 21   |    12 |
 +-----------+--------------------------+------+-------*/

Ora, suddividi gli intervalli originali in intervalli di 3 mesi:

WITH sensor_data AS (
  SELECT * FROM UNNEST(
    ARRAY<STRUCT<sensor_id INT64, duration RANGE<DATE>, flow INT64, spins INT64>>[
    (1, RANGE<DATE> "[2020-01-01, 2020-12-31)", 10, 21),
    (1, RANGE<DATE> "[2021-01-01, 2021-12-31)", 11, 4),
    (2, RANGE<DATE> "[2020-04-15, 2021-04-15)", 21, 31),
    (2, RANGE<DATE> "[2021-04-15, 2022-04-15)", 21, 12)
  ])
)
SELECT sensor_id, expanded_range, flow, spins
FROM sensor_data, UNNEST(GENERATE_RANGE_ARRAY(duration, INTERVAL 3 MONTH)) AS expanded_range;

/*-----------+--------------------------+------+-------+
 | sensor_id |      expanded_range      | flow | spins |
 +-----------+--------------------------+------+-------+
 |         1 | [2020-01-01, 2020-04-01) |   10 |    21 |
 |         1 | [2020-04-01, 2020-07-01) |   10 |    21 |
 |         1 | [2020-07-01, 2020-10-01) |   10 |    21 |
 |         1 | [2020-10-01, 2020-12-31) |   10 |    21 |
 |         1 | [2021-01-01, 2021-04-01) |   11 |     4 |
 |         1 | [2021-04-01, 2021-07-01) |   11 |     4 |
 |         1 | [2021-07-01, 2021-10-01) |   11 |     4 |
 |         1 | [2021-10-01, 2021-12-31) |   11 |     4 |
 |         2 | [2020-04-15, 2020-07-15) |   21 |    31 |
 |         2 | [2020-07-15, 2020-10-15) |   21 |    31 |
 |         2 | [2020-10-15, 2021-01-15) |   21 |    31 |
 |         2 | [2021-01-15, 2021-04-15) |   21 |    31 |
 |         2 | [2021-04-15, 2021-07-15) |   21 |    12 |
 |         2 | [2021-07-15, 2021-10-15) |   21 |    12 |
 |         2 | [2021-10-15, 2022-01-15) |   21 |    12 |
 |         2 | [2022-01-15, 2022-04-15) |   21 |    12 |
 +-----------+--------------------------+------+-------*/

Nella query precedente, ogni intervallo originale è stato suddiviso in intervalli più piccoli, con la larghezza impostata su INTERVAL 3 MONTH. Tuttavia, gli intervalli di 3 mesi non sono allineati a un'origine comune. Per allineare questi intervalli a un'origine comune 2020-01-01, esegui questa query:

WITH sensor_data AS (
  SELECT * FROM UNNEST(
    ARRAY<STRUCT<sensor_id INT64, duration RANGE<DATE>, flow INT64, spins INT64>>[
    (1, RANGE<DATE> "[2020-01-01, 2020-12-31)", 10, 21),
    (1, RANGE<DATE> "[2021-01-01, 2021-12-31)", 11, 4),
    (2, RANGE<DATE> "[2020-04-15, 2021-04-15)", 21, 31),
    (2, RANGE<DATE> "[2021-04-15, 2022-04-15)", 21, 12)
  ])
)
SELECT sensor_id, expanded_range, flow, spins
FROM sensor_data
JOIN UNNEST(GENERATE_RANGE_ARRAY(RANGE<DATE> "[2020-01-01, 2022-12-31)", INTERVAL 3 MONTH)) AS expanded_range
ON RANGE_OVERLAPS(duration, expanded_range);

/*-----------+--------------------------+------+-------+
 | sensor_id |      expanded_range      | flow | spins |
 +-----------+--------------------------+------+-------+
 |         1 | [2020-01-01, 2020-04-01) |   10 |    21 |
 |         1 | [2020-04-01, 2020-07-01) |   10 |    21 |
 |         1 | [2020-07-01, 2020-10-01) |   10 |    21 |
 |         1 | [2020-10-01, 2021-01-01) |   10 |    21 |
 |         1 | [2021-01-01, 2021-04-01) |   11 |     4 |
 |         1 | [2021-04-01, 2021-07-01) |   11 |     4 |
 |         1 | [2021-07-01, 2021-10-01) |   11 |     4 |
 |         1 | [2021-10-01, 2022-01-01) |   11 |     4 |
 |         2 | [2020-04-01, 2020-07-01) |   21 |    31 |
 |         2 | [2020-07-01, 2020-10-01) |   21 |    31 |
 |         2 | [2020-10-01, 2021-01-01) |   21 |    31 |
 |         2 | [2021-01-01, 2021-04-01) |   21 |    31 |
 |         2 | [2021-04-01, 2021-07-01) |   21 |    31 |
 |         2 | [2021-04-01, 2021-07-01) |   21 |    12 |
 |         2 | [2021-07-01, 2021-10-01) |   21 |    12 |
 |         2 | [2021-10-01, 2022-01-01) |   21 |    12 |
 |         2 | [2022-01-01, 2022-04-01) |   21 |    12 |
 |         2 | [2022-04-01, 2022-07-01) |   21 |    12 |
 +-----------+--------------------------+------+-------*/

Nella query precedente, la riga con l'intervallo [2020-04-15, 2021-04-15) è divisa in 5 intervalli, a partire dall'intervallo [2020-04-01, 2020-07-01). Tieni presente che il confine di inizio ora si estende oltre il confine di inizio originale, per allinearsi con l'origine comune. Se non vuoi che il limite di inizio si estenda oltre il limite di inizio originale, puoi limitare la condizione JOIN:

WITH sensor_data AS (
  SELECT * FROM UNNEST(
    ARRAY<STRUCT<sensor_id INT64, duration RANGE<DATE>, flow INT64, spins INT64>>[
    (1, RANGE<DATE> "[2020-01-01, 2020-12-31)", 10, 21),
    (1, RANGE<DATE> "[2021-01-01, 2021-12-31)", 11, 4),
    (2, RANGE<DATE> "[2020-04-15, 2021-04-15)", 21, 31),
    (2, RANGE<DATE> "[2021-04-15, 2022-04-15)", 21, 12)
  ])
)
SELECT sensor_id, expanded_range, flow, spins
FROM sensor_data
JOIN UNNEST(GENERATE_RANGE_ARRAY(RANGE<DATE> "[2020-01-01, 2022-12-31)", INTERVAL 3 MONTH)) AS expanded_range
ON RANGE_CONTAINS(duration, RANGE_START(expanded_range));

/*-----------+--------------------------+------+-------+
 | sensor_id |      expanded_range      | flow | spins |
 +-----------+--------------------------+------+-------+
 |         1 | [2020-01-01, 2020-04-01) |   10 |    21 |
 |         1 | [2020-04-01, 2020-07-01) |   10 |    21 |
 |         1 | [2020-07-01, 2020-10-01) |   10 |    21 |
 |         1 | [2020-10-01, 2021-01-01) |   10 |    21 |
 |         1 | [2021-01-01, 2021-04-01) |   11 |     4 |
 |         1 | [2021-04-01, 2021-07-01) |   11 |     4 |
 |         1 | [2021-07-01, 2021-10-01) |   11 |     4 |
 |         1 | [2021-10-01, 2022-01-01) |   11 |     4 |
 |         2 | [2020-07-01, 2020-10-01) |   21 |    31 |
 |         2 | [2020-10-01, 2021-01-01) |   21 |    31 |
 |         2 | [2021-01-01, 2021-04-01) |   21 |    31 |
 |         2 | [2021-04-01, 2021-07-01) |   21 |    31 |
 |         2 | [2021-07-01, 2021-10-01) |   21 |    12 |
 |         2 | [2021-10-01, 2022-01-01) |   21 |    12 |
 |         2 | [2022-01-01, 2022-04-01) |   21 |    12 |
 |         2 | [2022-04-01, 2022-07-01) |   21 |    12 |
 +-----------+--------------------------+------+-------*/

Ora puoi vedere che l'intervallo [2020-04-15, 2021-04-15) è stato suddiviso in 4 intervalli, a partire dall'intervallo [2020-07-01, 2020-10-01).

Best practice per l'archiviazione dei dati

  • Quando si archiviano i dati di serie temporali, è importante considerare i pattern di query utilizzati per le tabelle in cui sono archiviati i dati. In genere, quando esegui query sui dati delle serie temporali, puoi filtrare i dati per un intervallo di tempo specifico.

  • Per ottimizzare questi pattern di utilizzo, ti consigliamo di archiviare i dati delle serie temporali in tabelle partizionate con i dati partizionati in base alla colonna temporale o al tempo di importazione. Ciò può migliorare notevolmente le prestazioni in termini di tempo di query dei dati delle serie temporali, in quanto ciò consente a BigQuery di eliminare le partizioni che non contengono dati sottoposti a query.

  • Puoi abilitare il clustering in base all'ora, all'intervallo o a una delle colonne di partizionamento per migliorare ulteriormente le prestazioni del tempo di query.