Define mejor el modelo mediante el ajuste de hiperparámetros para ajustar el modelo a los datos de entrenamiento.
Evalúa el modelo para evaluar su rendimiento en datos fuera del conjunto de entrenamiento y, también, a fin de compararlo con otros modelos si corresponde.
Proporciona explicabilidad para el modelo a fin de aclarar cómo los atributos particulares influyeron en una predicción determinada y, también, en el modelo en general.
Obtén más información sobre los componentes que comprimen el modelo mediante pesos del modelo.
Debido a que puedes usar muchos tipos de modelos diferentes en BigQuery ML, las funciones disponibles para cada modelo varían. Consulta el recorrido del usuario de extremo a extremo para cada modelo a fin de ver las funciones específicas disponibles para cada modelo.
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Información o código de muestra incorrectos","incorrectInformationOrSampleCode","thumb-down"],["Faltan la información o los ejemplos que necesito","missingTheInformationSamplesINeed","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-09-04 (UTC)"],[[["\u003cp\u003eBigQuery ML enables the creation and operationalization of machine learning models using SQL over BigQuery data.\u003c/p\u003e\n"],["\u003cp\u003eModel development in BigQuery ML involves creating, preprocessing, tuning, evaluating, inferencing, and explaining models.\u003c/p\u003e\n"],["\u003cp\u003eBigQuery ML supports both automatic and manual feature preprocessing via functions and the \u003ccode\u003eTRANSFORM\u003c/code\u003e clause.\u003c/p\u003e\n"],["\u003cp\u003eHyperparameter tuning is used to refine the model to better fit the training data.\u003c/p\u003e\n"],["\u003cp\u003eThe available functions vary between each type of model, detailed in the end-to-end user journey for each model.\u003c/p\u003e\n"]]],[],null,["# Model creation\n==============\n\nBigQuery ML lets you build and operationalize machine learning (ML)\nmodels over data in BigQuery by using SQL.\n\nA typical model development workflow in BigQuery ML looks similar\nto the following:\n\n1. Create the model using the [`CREATE MODEL` statement](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create).\n2. Perform feature preprocessing. Some preprocessing happens [automatically](/bigquery/docs/reference/standard-sql/bigqueryml-auto-preprocessing), plus you can use [manual preprocessing functions](/bigquery/docs/reference/standard-sql/bigqueryml-preprocessing-functions) inside the [`TRANSFORM` clause](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create#transform) to do additional preprocessing.\n3. Refine the model by performing [hyperparameter tuning](/bigquery/docs/hp-tuning-overview) to fit the model to the training data.\n4. [Evaluate the model](/bigquery/docs/evaluate-overview) to assess how it might perform on data outside of the training set, and also to compare it to other models if appropriate.\n5. [Perform inference](/bigquery/docs/inference-overview) to analyze data by using the model.\n6. Provide [explainability](/bigquery/docs/xai-overview) for the model, to clarify how particular features influenced a given prediction and also the model overall.\n7. Learn more about the components that comprize the model by using [model weights](/bigquery/docs/weights-overview).\n\nBecause you can use many different kinds of models in BigQuery ML,\nthe functions available for each model vary. See the\n[End-to-end user journey for each model](/bigquery/docs/e2e-journey) to see\nthe specific functions available for each model."]]