Diese Seite wurde von der Cloud Translation API übersetzt.
Switch to English

Knotenzahl eines Modells aktualisieren

Stellt ein Modell mit einer aktualisierten Knotenzahl bereit.

Dokumentationsseiten mit diesem Codebeispiel

Die folgenden Dokumente enthalten das Codebeispiel im Kontext:



import (

	automl "cloud.google.com/go/automl/apiv1"
	automlpb "google.golang.org/genproto/googleapis/cloud/automl/v1"

// visionClassificationDeployModelWithNodeCount deploys a model with node count.
func visionClassificationDeployModelWithNodeCount(w io.Writer, projectID string, location string, modelID string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// modelID := "ICN123456789..."

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	defer client.Close()

	req := &automlpb.DeployModelRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/models/%s", projectID, location, modelID),
		ModelDeploymentMetadata: &automlpb.DeployModelRequest_ImageClassificationModelDeploymentMetadata{
			ImageClassificationModelDeploymentMetadata: &automlpb.ImageClassificationModelDeploymentMetadata{
				NodeCount: 2,

	op, err := client.DeployModel(ctx, req)
	if err != nil {
		return fmt.Errorf("DeployModel: %v", err)
	fmt.Fprintf(w, "Processing operation name: %q\n", op.Name())

	if err := op.Wait(ctx); err != nil {
		return fmt.Errorf("Wait: %v", err)

	fmt.Fprintf(w, "Model deployed.\n")

	return nil


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1beta1.AutoMlClient;
import com.google.cloud.automl.v1beta1.DeployModelRequest;
import com.google.cloud.automl.v1beta1.ImageClassificationModelDeploymentMetadata;
import com.google.cloud.automl.v1beta1.ModelName;
import com.google.cloud.automl.v1beta1.OperationMetadata;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class ClassificationDeployModelNodeCount {

  // Deploy a model with a specified node count
  static void classificationDeployModelNodeCount(String projectId, String modelId)
      throws IOException, ExecutionException, InterruptedException {
    // String projectId = "YOUR_PROJECT_ID";
    // String modelId = "YOUR_MODEL_ID";

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);

      // Set how many nodes the model is deployed on
      ImageClassificationModelDeploymentMetadata deploymentMetadata =

      DeployModelRequest request =
      // Deploy the model
      OperationFuture<Empty, OperationMetadata> future = client.deployModelAsync(request);
      System.out.println("Model deployment on 2 nodes finished");


 * TODO(developer): Uncomment these variables before running the sample.
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function deployModelWithNodeCount() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
    imageClassificationModelDeploymentMetadata: {
      nodeCount: 2,

  const [operation] = await client.deployModel(request);

  // Wait for operation to complete.
  const [response] = await operation.promise();
  console.log(`Model deployment finished. ${response}`);



from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)

# node count determines the number of nodes to deploy the model on.
# https://cloud.google.com/automl/docs/reference/rpc/google.cloud.automl.v1#imageclassificationmodeldeploymentmetadata
metadata = automl.ImageClassificationModelDeploymentMetadata(node_count=2)

request = automl.DeployModelRequest(
    name=model_full_id, image_classification_model_deployment_metadata=metadata
response = client.deploy_model(request=request)

print("Model deployment finished. {}".format(response.result()))

Nächste Schritte

Informationen zum Suchen und Filtern von Codebeispielen für andere Google Cloud-Produkte finden Sie im Google Cloud-Beispielbrowser