Vertex AI で Deep Learning VM Image と Deep Learning Containers を使用する
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
このページでは、Deep Learning VM と Deep Learning Containers の主な機能について説明します。また、これらのプロダクトを Vertex AI でどのように使用するかについても説明します。
Deep Learning VM
概要
Deep Learning VM Image は、データ サイエンスと機械学習のタスク用に最適化された仮想マシンイメージのセットです。すべてのイメージには、主要な ML フレームワークとツールがプリインストールされています。GPU を備えたインスタンスでそのまま使用でき、データ処理タスクを高速化できます。
Deep Learning VM Image は、フレームワークとプロセッサの数多くの組み合わせをサポートするために使用できます。現在、TensorFlow Enterprise、TensorFlow、PyTorch、汎用のハイ パフォーマンス コンピューティングをサポートするイメージがあり、それぞれに CPU のみと GPU 対応のワークフロー バージョンがあります。
Deep Learning VM インスタンスは、Vertex AI の作業の一部で使用できます。たとえば、最適化されたデータ処理機能を利用するために、Deep Learning VM インスタンスで実行するアプリケーションを開発できます。また、Deep Learning VM インスタンスをセルフマネージド分散トレーニング システムの開発環境として使用することもできます。
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["わかりにくい","hardToUnderstand","thumb-down"],["情報またはサンプルコードが不正確","incorrectInformationOrSampleCode","thumb-down"],["必要な情報 / サンプルがない","missingTheInformationSamplesINeed","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["その他","otherDown","thumb-down"]],["最終更新日 2025-09-04 UTC。"],[],[],null,["# Use Deep Learning VM Images and Deep Learning Containers with Vertex AI\n\nThis page describes the main features of Deep Learning VM\nand Deep Learning Containers, and\nhelps you understand how you might use these products with\nVertex AI.\n\nDeep Learning VM\n----------------\n\n### Overview\n\nDeep Learning VM Images is a set of\nvirtual machine images optimized for data science and machine\nlearning tasks. All images come with key ML frameworks and tools\npre-installed. You can use them out of the box on instances with\nGPUs to accelerate your data processing tasks.\n\nDeep Learning VM images are available to support many combinations\nof framework and processor. There are currently images supporting\n[TensorFlow Enterprise](/tensorflow-enterprise/docs),\nTensorFlow, PyTorch, and generic high-performance computing,\nwith versions for both CPU-only and GPU-enabled workflows.\n\nTo see a list of frameworks available, see [Choosing an\nimage](/deep-learning-vm/docs/images).\n\nTo learn more, see the [Deep Learning VM\ndocumentation](/deep-learning-vm/docs).\n\n### Using Deep Learning VM\n\nYou can use a Deep Learning VM instance as a part\nof your work in Vertex AI. For example, you can\ndevelop an application to run on a Deep Learning VM\ninstance to take advantage of its optimized data-processing capability.\nOr use a Deep Learning VM instance\nas a development environment for a self-managed distributed training\nsystem.\n\nYou can create Deep Learning VM instances on the\n[Deep Learning VM Cloud Marketplace\npage](https://console.cloud.google.com/marketplace/details/click-to-deploy-images/deeplearning)\nin the Google Cloud console.\n\n[Go to the Deep Learning VM Cloud Marketplace\npage](https://console.cloud.google.com/marketplace/details/click-to-deploy-images/deeplearning)\n\nDeep Learning Containers\n------------------------\n\n### Overview\n\nDeep Learning Containers are a set of Docker containers\nwith key data science frameworks, libraries, and tools pre-installed.\nThese containers provide you with performance-optimized, consistent\nenvironments that can help you prototype and implement workflows quickly.\n\nTo learn more, see the [Deep Learning Containers\ndocumentation](/deep-learning-containers/docs).\n\n### Using Deep Learning Containers\n\nYou can use a Deep Learning Containers instance as a part\nof your work in Vertex AI. For example, the [prebuilt containers\navailable on Vertex AI](/vertex-ai/docs/training/pre-built-containers)\nare integrated Deep Learning Containers.\n\nYou can also build your Vertex AI model as a\n[custom container](/vertex-ai/docs/training/containers-overview)-based application\nto help you deploy it in a consistent environment and run it wherever\nit needs to be.\n\nTo get started building your own custom container, follow these steps:\n\n1. Choose one of the available [container\n images](/deep-learning-containers/docs/choosing-container).\n\n2. See the relevant Vertex AI documentation on container\n requirements, such as [Custom containers for\n training](/vertex-ai/docs/training/containers-overview)\n and [Custom container requirements for\n prediction](/vertex-ai/docs/predictions/custom-container-requirements).\n\n Consider these requirements and prepare to modify your\n container accordingly.\n3. [Create a Deep Learning Containers local\n instance](/deep-learning-containers/docs/getting-started-local),\n while making sure to modify the container according to\n Vertex AI requirements.\n\n4. [Push the container to\n Artifact Registry](/vertex-ai/docs/training/create-custom-container#build-and-push-container).\n\nWhat's next\n-----------\n\n- Read [Introduction to\n Deep Learning VM](/deep-learning-vm/docs/introduction)\n to learn more about the product's features and capabilities.\n\n- To get started using Deep Learning VM, create a new\n instance [using\n Cloud Marketplace](/deep-learning-vm/docs/create-vm-instance-console)\n or [using the command\n line](/ai-platform/deep-learning-vm/docs/create-vm-instance-gcloud).\n\n- Read [Deep Learning Containers\n overview](/deep-learning-containers/docs/overview)\n to learn more about the product's features and capabilities.\n\n- To get started using Deep Learning Containers, [create\n a local deep learning\n container](/deep-learning-containers/docs/getting-started-local)."]]