Loading CSV data from Cloud Storage

When you load CSV data from Cloud Storage, you can load the data into a new table or partition, or you can append to or overwrite an existing table or partition. When your data is loaded into BigQuery, it is converted into columnar format for Capacitor (BigQuery's storage format).

When you load data from Cloud Storage into a BigQuery table, the dataset that contains the table must be in the same regional or multi- regional location as the Cloud Storage bucket.

For information about loading CSV data from a local file, see Loading data into BigQuery from a local data source.

Try it for yourself

If you're new to Google Cloud, create an account to evaluate how BigQuery performs in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.

Try BigQuery free

Limitations

You are subject to the following limitations when you load data into BigQuery from a Cloud Storage bucket:

  • If your dataset's location is set to a value other than the US multi-region, then the Cloud Storage bucket must be in the same region or contained in the same multi-region as the dataset.
  • BigQuery does not guarantee data consistency for external data sources. Changes to the underlying data while a query is running can result in unexpected behavior.
  • BigQuery does not support Cloud Storage object versioning. If you include a generation number in the Cloud Storage URI, then the load job fails.

When you load CSV files into BigQuery, note the following:

  • CSV files do not support nested or repeated data.
  • Remove byte order mark (BOM) characters. They might cause unexpected issues.
  • If you use gzip compression, BigQuery cannot read the data in parallel. Loading compressed CSV data into BigQuery is slower than loading uncompressed data. See Loading compressed and uncompressed data.
  • You cannot include both compressed and uncompressed files in the same load job.
  • The maximum size for a gzip file is 4 GB.
  • When you load CSV or JSON data, values in DATE columns must use the dash (-) separator and the date must be in the following format: YYYY-MM-DD (year-month-day).
  • When you load JSON or CSV data, values in TIMESTAMP columns must use a dash (-) or slash (/) separator for the date portion of the timestamp, and the date must be in one of the following formats: YYYY-MM-DD (year-month-day) or YYYY/MM/DD (year/month/day). The hh:mm:ss (hour-minute-second) portion of the timestamp must use a colon (:) separator.
  • Loading CSV data using schema autodetection does not support flexible column names by default. To enroll in this preview complete the enrollment form.
  • Your files must meet the CSV file size limits described in the load jobs limits.

Before you begin

Grant Identity and Access Management (IAM) roles that give users the necessary permissions to perform each task in this document, and create a dataset to store your data.

Required permissions

To load data into BigQuery, you need IAM permissions to run a load job and load data into BigQuery tables and partitions. If you are loading data from Cloud Storage, you also need IAM permissions to access the bucket that contains your data.

Permissions to load data into BigQuery

To load data into a new BigQuery table or partition or to append or overwrite an existing table or partition, you need the following IAM permissions:

  • bigquery.tables.create
  • bigquery.tables.updateData
  • bigquery.tables.update
  • bigquery.jobs.create

Each of the following predefined IAM roles includes the permissions that you need in order to load data into a BigQuery table or partition:

  • roles/bigquery.dataEditor
  • roles/bigquery.dataOwner
  • roles/bigquery.admin (includes the bigquery.jobs.create permission)
  • bigquery.user (includes the bigquery.jobs.create permission)
  • bigquery.jobUser (includes the bigquery.jobs.create permission)

Additionally, if you have the bigquery.datasets.create permission, you can create and update tables using a load job in the datasets that you create.

For more information on IAM roles and permissions in BigQuery, see Predefined roles and permissions.

Permissions to load data from Cloud Storage

To get the permissions that you need to load data from a Cloud Storage bucket, ask your administrator to grant you the Storage Admin (roles/storage.admin) IAM role on the bucket. For more information about granting roles, see Manage access.

This predefined role contains the permissions required to load data from a Cloud Storage bucket. To see the exact permissions that are required, expand the Required permissions section:

Required permissions

The following permissions are required to load data from a Cloud Storage bucket:

  • storage.buckets.get
  • storage.objects.get
  • storage.objects.list (required if you are using a URI wildcard)

You might also be able to get these permissions with custom roles or other predefined roles.

Create a dataset

Create a BigQuery dataset to store your data.

Loading CSV data into a table

To load CSV data from Cloud Storage into a new BigQuery table, select one of the following options:

Console


To follow step-by-step guidance for this task directly in the Cloud Shell Editor, click Guide me:

Guide me


  1. In the Google Cloud console, go to the BigQuery page.

    Go to BigQuery

  2. In the Explorer pane, expand your project, and then select a dataset.
  3. In the Dataset info section, click Create table.
  4. In the Create table panel, specify the following details:
    1. In the Source section, select Google Cloud Storage in the Create table from list. Then, do the following:
      1. Select a file from the Cloud Storage bucket, or enter the Cloud Storage URI. You cannot include multiple URIs in the Google Cloud console, but wildcards are supported. The Cloud Storage bucket must be in the same location as the dataset that contains the table you want to create, append, or overwrite. select source file to create a BigQuery table
      2. For File format, select CSV.
    2. In the Destination section, specify the following details:
      1. For Dataset, select the dataset in which you want to create the table.
      2. In the Table field, enter the name of the table that you want to create.
      3. Verify that the Table type field is set to Native table.
    3. In the Schema section, enter the schema definition. To enable the auto detection of a schema, select Auto detect. You can enter schema information manually by using one of the following methods:
      • Option 1: Click Edit as text and paste the schema in the form of a JSON array. When you use a JSON array, you generate the schema using the same process as creating a JSON schema file. You can view the schema of an existing table in JSON format by entering the following command:
            bq show --format=prettyjson dataset.table
            
      • Option 2: Click Add field and enter the table schema. Specify each field's Name, Type, and Mode.
    4. Optional: Specify Partition and cluster settings. For more information, see Creating partitioned tables and Creating and using clustered tables.
    5. Click Advanced options and do the following:
      • For Write preference, leave Write if empty selected. This option creates a new table and loads your data into it.
      • For Number of errors allowed, accept the default value of 0 or enter the maximum number of rows containing errors that can be ignored. If the number of rows with errors exceeds this value, the job will result in an invalid message and fail. This option applies only to CSV and JSON files.
      • If you want to ignore values in a row that are not present in the table's schema, then select Unknown values.
      • For Field delimiter, choose the character that separates the cells in your CSV file: Comma, Tab, Pipe, or Custom. If you choose Custom, enter the delimiter in the Custom field delimiter box. The default value is Comma.
      • For Header rows to skip, enter the number of header rows to skip at the top of the CSV file. The default value is 0.
      • For Quoted newlines, check Allow quoted newlines to allow quoted data sections that contain newline characters in a CSV file. The default value is false.
      • For Jagged rows, check Allow jagged rows to accept rows in CSV files that are missing trailing optional columns. The missing values are treated as nulls. If unchecked, records with missing trailing columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. The default value is false.
      • For Encryption, click Customer-managed key to use a Cloud Key Management Service key. If you leave the Google-managed key setting, BigQuery encrypts the data at rest.
    6. Click Create table.

SQL

Use the LOAD DATA DDL statement (Preview). The following example loads a CSV file into the new table mytable:

  1. In the Google Cloud console, go to the BigQuery page.

    Go to BigQuery

  2. In the query editor, enter the following statement:

    LOAD DATA OVERWRITE mydataset.mytable
    FROM FILES (
      format = 'CSV',
      uris = ['gs://bucket/path/file.csv']);
    

  3. Click Run.

For more information about how to run queries, see Running interactive queries.

bq

Use the bq load command, specify CSV using the --source_format flag, and include a Cloud Storage URI. You can include a single URI, a comma-separated list of URIs, or a URI containing a wildcard. Supply the schema inline, in a schema definition file, or use schema auto-detect. If you don't specify a schema, and --autodetect is false, and the destination table exists, then the schema of the destination table is used.

(Optional) Supply the --location flag and set the value to your location.

Other optional flags include:

  • --allow_jagged_rows: When specified, accept rows in CSV files that are missing trailing optional columns. The missing values are treated as nulls. If unchecked, records with missing trailing columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. The default value is false.
  • --allow_quoted_newlines: When specified, allows quoted data sections that contain newline characters in a CSV file. The default value is false.
  • --field_delimiter: The character that indicates the boundary between columns in the data. Both \t and tab are allowed for tab delimiters. The default value is ,.
  • --null_marker: An optional custom string that represents a NULL value in CSV data.
  • --skip_leading_rows: Specifies the number of header rows to skip at the top of the CSV file. The default value is 0.
  • --quote: The quote character to use to enclose records. The default value is ". To indicate no quote character, use an empty string.
  • --max_bad_records: An integer that specifies the maximum number of bad records allowed before the entire job fails. The default value is 0. At most, five errors of any type are returned regardless of the --max_bad_records value.
  • --ignore_unknown_values: When specified, allows and ignores extra, unrecognized values in CSV or JSON data.
  • --autodetect: When specified, enable schema auto-detection for CSV and JSON data.
  • --time_partitioning_type: Enables time-based partitioning on a table and sets the partition type. Possible values are HOUR, DAY, MONTH, and YEAR. This flag is optional when you create a table partitioned on a DATE, DATETIME, or TIMESTAMP column. The default partition type for time-based partitioning is DAY. You cannot change the partitioning specification on an existing table.
  • --time_partitioning_expiration: An integer that specifies (in seconds) when a time-based partition should be deleted. The expiration time evaluates to the partition's UTC date plus the integer value.
  • --time_partitioning_field: The DATE or TIMESTAMP column used to create a partitioned table. If time-based partitioning is enabled without this value, an ingestion-time partitioned table is created.
  • --require_partition_filter: When enabled, this option requires users to include a WHERE clause that specifies the partitions to query. Requiring a partition filter may reduce cost and improve performance. For more information, see Querying partitioned tables.
  • --clustering_fields: A comma-separated list of up to four column names used to create a clustered table.
  • --destination_kms_key: The Cloud KMS key for encryption of the table data.

    For more information on the bq load command, see:

    For more information on partitioned tables, see:

    For more information on clustered tables, see:

    For more information on table encryption, see:

To load CSV data into BigQuery, enter the following command:

bq --location=location load \
--source_format=format \
dataset.table \
path_to_source \
schema

Where:

  • location is your location. The --location flag is optional. For example, if you are using BigQuery in the Tokyo region, you can set the flag's value to asia-northeast1. You can set a default value for the location using the .bigqueryrc file.
  • format is CSV.
  • dataset is an existing dataset.
  • table is the name of the table into which you're loading data.
  • path_to_source is a fully-qualified Cloud Storage URI or a comma-separated list of URIs. Wildcards are also supported.
  • schema is a valid schema. The schema can be a local JSON file, or it can be typed inline as part of the command. You can also use the --autodetect flag instead of supplying a schema definition.

Examples:

The following command loads data from gs://mybucket/mydata.csv into a table named mytable in mydataset. The schema is defined in a local schema file named myschema.json.

    bq load \
    --source_format=CSV \
    mydataset.mytable \
    gs://mybucket/mydata.csv \
    ./myschema.json

The following command loads data from gs://mybucket/mydata.csv into a table named mytable in mydataset. The schema is defined in a local schema file named myschema.json. The CSV file includes two header rows. If --skip_leading_rows is unspecified, the default behavior is to assume the file does not contain headers.

    bq load \
    --source_format=CSV \
    --skip_leading_rows=2
    mydataset.mytable \
    gs://mybucket/mydata.csv \
    ./myschema.json

The following command loads data from gs://mybucket/mydata.csv into an ingestion-time partitioned table named mytable in mydataset. The schema is defined in a local schema file named myschema.json.

    bq load \
    --source_format=CSV \
    --time_partitioning_type=DAY \
    mydataset.mytable \
    gs://mybucket/mydata.csv \
    ./myschema.json

The following command loads data from gs://mybucket/mydata.csv into a new partitioned table named mytable in mydataset. The table is partitioned on the mytimestamp column. The schema is defined in a local schema file named myschema.json.

    bq load \
    --source_format=CSV \
    --time_partitioning_field mytimestamp \
    mydataset.mytable \
    gs://mybucket/mydata.csv \
    ./myschema.json

The following command loads data from gs://mybucket/mydata.csv into a table named mytable in mydataset. The schema is auto detected.

    bq load \
    --autodetect \
    --source_format=CSV \
    mydataset.mytable \
    gs://mybucket/mydata.csv

The following command loads data from gs://mybucket/mydata.csv into a table named mytable in mydataset. The schema is defined inline in the format field:data_type,field:data_type.

    bq load \
    --source_format=CSV \
    mydataset.mytable \
    gs://mybucket/mydata.csv \
    qtr:STRING,sales:FLOAT,year:STRING

The following command loads data from multiple files in gs://mybucket/ into a table named mytable in mydataset. The Cloud Storage URI uses a wildcard. The schema is auto detected.

    bq load \
    --autodetect \
    --source_format=CSV \
    mydataset.mytable \
    gs://mybucket/mydata*.csv

The following command loads data from multiple files in gs://mybucket/ into a table named mytable in mydataset. The command includes a comma- separated list of Cloud Storage URIs with wildcards. The schema is defined in a local schema file named myschema.json.

    bq load \
    --source_format=CSV \
    mydataset.mytable \
    "gs://mybucket/00/*.csv","gs://mybucket/01/*.csv" \
    ./myschema.json

API

  1. Create a load job that points to the source data in Cloud Storage.

  2. (Optional) Specify your location in the location property in the jobReference section of the job resource.

  3. The source URIs property must be fully-qualified, in the format gs://bucket/object. Each URI can contain one '*' wildcard character.

  4. Specify the CSV data format by setting the sourceFormat property to CSV.

  5. To check the job status, call jobs.get(job_id*), where job_id is the ID of the job returned by the initial request.

    • If status.state = DONE, the job completed successfully.
    • If the status.errorResult property is present, the request failed, and that object will include information describing what went wrong. When a request fails, no table is created and no data is loaded.
    • If status.errorResult is absent, the job finished successfully, although there might have been some non-fatal errors, such as problems importing a few rows. Non-fatal errors are listed in the returned job object's status.errors property.

API notes:

  • Load jobs are atomic and consistent; if a load job fails, none of the data is available, and if a load job succeeds, all of the data is available.

  • As a best practice, generate a unique ID and pass it as jobReference.jobId when calling jobs.insert to create a load job. This approach is more robust to network failure because the client can poll or retry on the known job ID.

  • Calling jobs.insert on a given job ID is idempotent. You can retry as many times as you like on the same job ID, and at most one of those operations will succeed.

C#

Before trying this sample, follow the C# setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery C# API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.


using Google.Cloud.BigQuery.V2;
using System;

public class BigQueryLoadTableGcsCsv
{
    public void LoadTableGcsCsv(
        string projectId = "your-project-id",
        string datasetId = "your_dataset_id"
    )
    {
        BigQueryClient client = BigQueryClient.Create(projectId);
        var gcsURI = "gs://cloud-samples-data/bigquery/us-states/us-states.csv";
        var dataset = client.GetDataset(datasetId);
        var schema = new TableSchemaBuilder {
            { "name", BigQueryDbType.String },
            { "post_abbr", BigQueryDbType.String }
        }.Build();
        var destinationTableRef = dataset.GetTableReference(
            tableId: "us_states");
        // Create job configuration
        var jobOptions = new CreateLoadJobOptions()
        {
            // The source format defaults to CSV; line below is optional.
            SourceFormat = FileFormat.Csv,
            SkipLeadingRows = 1
        };
        // Create and run job
        var loadJob = client.CreateLoadJob(
            sourceUri: gcsURI, destination: destinationTableRef,
            schema: schema, options: jobOptions);
        loadJob = loadJob.PollUntilCompleted().ThrowOnAnyError();  // Waits for the job to complete.

        // Display the number of rows uploaded
        BigQueryTable table = client.GetTable(destinationTableRef);
        Console.WriteLine(
            $"Loaded {table.Resource.NumRows} rows to {table.FullyQualifiedId}");
    }
}

Go

Before trying this sample, follow the Go setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Go API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// importCSVExplicitSchema demonstrates loading CSV data from Cloud Storage into a BigQuery
// table and providing an explicit schema for the data.
func importCSVExplicitSchema(projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %v", err)
	}
	defer client.Close()

	gcsRef := bigquery.NewGCSReference("gs://cloud-samples-data/bigquery/us-states/us-states.csv")
	gcsRef.SkipLeadingRows = 1
	gcsRef.Schema = bigquery.Schema{
		{Name: "name", Type: bigquery.StringFieldType},
		{Name: "post_abbr", Type: bigquery.StringFieldType},
	}
	loader := client.Dataset(datasetID).Table(tableID).LoaderFrom(gcsRef)
	loader.WriteDisposition = bigquery.WriteEmpty

	job, err := loader.Run(ctx)
	if err != nil {
		return err
	}
	status, err := job.Wait(ctx)
	if err != nil {
		return err
	}

	if status.Err() != nil {
		return fmt.Errorf("job completed with error: %v", status.Err())
	}
	return nil
}

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.CsvOptions;
import com.google.cloud.bigquery.Field;
import com.google.cloud.bigquery.Job;
import com.google.cloud.bigquery.JobInfo;
import com.google.cloud.bigquery.LoadJobConfiguration;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardSQLTypeName;
import com.google.cloud.bigquery.TableId;

// Sample to load CSV data from Cloud Storage into a new BigQuery table
public class LoadCsvFromGcs {

  public static void runLoadCsvFromGcs() throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    String sourceUri = "gs://cloud-samples-data/bigquery/us-states/us-states.csv";
    Schema schema =
        Schema.of(
            Field.of("name", StandardSQLTypeName.STRING),
            Field.of("post_abbr", StandardSQLTypeName.STRING));
    loadCsvFromGcs(datasetName, tableName, sourceUri, schema);
  }

  public static void loadCsvFromGcs(
      String datasetName, String tableName, String sourceUri, Schema schema) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      // Skip header row in the file.
      CsvOptions csvOptions = CsvOptions.newBuilder().setSkipLeadingRows(1).build();

      TableId tableId = TableId.of(datasetName, tableName);
      LoadJobConfiguration loadConfig =
          LoadJobConfiguration.newBuilder(tableId, sourceUri, csvOptions).setSchema(schema).build();

      // Load data from a GCS CSV file into the table
      Job job = bigquery.create(JobInfo.of(loadConfig));
      // Blocks until this load table job completes its execution, either failing or succeeding.
      job = job.waitFor();
      if (job.isDone()) {
        System.out.println("CSV from GCS successfully added during load append job");
      } else {
        System.out.println(
            "BigQuery was unable to load into the table due to an error:"
                + job.getStatus().getError());
      }
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Column not added during load append \n" + e.toString());
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Node.js API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

// Import the Google Cloud client libraries
const {BigQuery} = require('@google-cloud/bigquery');
const {Storage} = require('@google-cloud/storage');

// Instantiate clients
const bigquery = new BigQuery();
const storage = new Storage();

/**
 * This sample loads the CSV file at
 * https://storage.googleapis.com/cloud-samples-data/bigquery/us-states/us-states.csv
 *
 * TODO(developer): Replace the following lines with the path to your file.
 */
const bucketName = 'cloud-samples-data';
const filename = 'bigquery/us-states/us-states.csv';

async function loadCSVFromGCS() {
  // Imports a GCS file into a table with manually defined schema.

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = 'my_dataset';
  // const tableId = 'my_table';

  // Configure the load job. For full list of options, see:
  // https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationLoad
  const metadata = {
    sourceFormat: 'CSV',
    skipLeadingRows: 1,
    schema: {
      fields: [
        {name: 'name', type: 'STRING'},
        {name: 'post_abbr', type: 'STRING'},
      ],
    },
    location: 'US',
  };

  // Load data from a Google Cloud Storage file into the table
  const [job] = await bigquery
    .dataset(datasetId)
    .table(tableId)
    .load(storage.bucket(bucketName).file(filename), metadata);

  // load() waits for the job to finish
  console.log(`Job ${job.id} completed.`);

  // Check the job's status for errors
  const errors = job.status.errors;
  if (errors && errors.length > 0) {
    throw errors;
  }
}

PHP

Before trying this sample, follow the PHP setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery PHP API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

use Google\Cloud\BigQuery\BigQueryClient;
use Google\Cloud\Core\ExponentialBackoff;

/** Uncomment and populate these variables in your code */
// $projectId  = 'The Google project ID';
// $datasetId  = 'The BigQuery dataset ID';

// instantiate the bigquery table service
$bigQuery = new BigQueryClient([
    'projectId' => $projectId,
]);
$dataset = $bigQuery->dataset($datasetId);
$table = $dataset->table('us_states');

// create the import job
$gcsUri = 'gs://cloud-samples-data/bigquery/us-states/us-states.csv';
$schema = [
    'fields' => [
        ['name' => 'name', 'type' => 'string'],
        ['name' => 'post_abbr', 'type' => 'string']
    ]
];
$loadConfig = $table->loadFromStorage($gcsUri)->schema($schema)->skipLeadingRows(1);
$job = $table->runJob($loadConfig);
// poll the job until it is complete
$backoff = new ExponentialBackoff(10);
$backoff->execute(function () use ($job) {
    print('Waiting for job to complete' . PHP_EOL);
    $job->reload();
    if (!$job->isComplete()) {
        throw new Exception('Job has not yet completed', 500);
    }
});
// check if the job has errors
if (isset($job->info()['status']['errorResult'])) {
    $error = $job->info()['status']['errorResult']['message'];
    printf('Error running job: %s' . PHP_EOL, $error);
} else {
    print('Data imported successfully' . PHP_EOL);
}

Python

Before trying this sample, follow the Python setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Python API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

Use the Client.load_table_from_uri() method to load data from a CSV file in Cloud Storage. Supply an explicit schema definition by setting the LoadJobConfig.schema property to a list of SchemaField objects.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name"

job_config = bigquery.LoadJobConfig(
    schema=[
        bigquery.SchemaField("name", "STRING"),
        bigquery.SchemaField("post_abbr", "STRING"),
    ],
    skip_leading_rows=1,
    # The source format defaults to CSV, so the line below is optional.
    source_format=bigquery.SourceFormat.CSV,
)
uri = "gs://cloud-samples-data/bigquery/us-states/us-states.csv"

load_job = client.load_table_from_uri(
    uri, table_id, job_config=job_config
)  # Make an API request.

load_job.result()  # Waits for the job to complete.

destination_table = client.get_table(table_id)  # Make an API request.
print("Loaded {} rows.".format(destination_table.num_rows))

Ruby

Before trying this sample, follow the Ruby setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Ruby API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

require "google/cloud/bigquery"

def load_table_gcs_csv dataset_id = "your_dataset_id"
  bigquery = Google::Cloud::Bigquery.new
  dataset  = bigquery.dataset dataset_id
  gcs_uri  = "gs://cloud-samples-data/bigquery/us-states/us-states.csv"
  table_id = "us_states"

  load_job = dataset.load_job table_id, gcs_uri, skip_leading: 1 do |schema|
    schema.string "name"
    schema.string "post_abbr"
  end
  puts "Starting job #{load_job.job_id}"

  load_job.wait_until_done! # Waits for table load to complete.
  puts "Job finished."

  table = dataset.table table_id
  puts "Loaded #{table.rows_count} rows to table #{table.id}"
end

Loading CSV data into a table that uses column-based time partitioning

To load CSV data from Cloud Storage into a BigQuery table that uses column-based time partitioning:

Go

Before trying this sample, follow the Go setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Go API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.


import (
	"context"
	"fmt"
	"time"

	"cloud.google.com/go/bigquery"
)

// importPartitionedTable demonstrates specifing time partitioning for a BigQuery table when loading
// CSV data from Cloud Storage.
func importPartitionedTable(projectID, destDatasetID, destTableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %v", err)
	}
	defer client.Close()

	gcsRef := bigquery.NewGCSReference("gs://cloud-samples-data/bigquery/us-states/us-states-by-date.csv")
	gcsRef.SkipLeadingRows = 1
	gcsRef.Schema = bigquery.Schema{
		{Name: "name", Type: bigquery.StringFieldType},
		{Name: "post_abbr", Type: bigquery.StringFieldType},
		{Name: "date", Type: bigquery.DateFieldType},
	}
	loader := client.Dataset(destDatasetID).Table(destTableID).LoaderFrom(gcsRef)
	loader.TimePartitioning = &bigquery.TimePartitioning{
		Field:      "date",
		Expiration: 90 * 24 * time.Hour,
	}
	loader.WriteDisposition = bigquery.WriteEmpty

	job, err := loader.Run(ctx)
	if err != nil {
		return err
	}
	status, err := job.Wait(ctx)
	if err != nil {
		return err
	}

	if status.Err() != nil {
		return fmt.Errorf("job completed with error: %v", status.Err())
	}
	return nil
}

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Field;
import com.google.cloud.bigquery.FormatOptions;
import com.google.cloud.bigquery.Job;
import com.google.cloud.bigquery.JobId;
import com.google.cloud.bigquery.JobInfo;
import com.google.cloud.bigquery.LoadJobConfiguration;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardSQLTypeName;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TimePartitioning;
import java.time.Duration;
import java.time.temporal.ChronoUnit;
import java.util.UUID;

public class LoadPartitionedTable {

  public static void runLoadPartitionedTable() throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    String sourceUri = "/path/to/file.csv";
    loadPartitionedTable(datasetName, tableName, sourceUri);
  }

  public static void loadPartitionedTable(String datasetName, String tableName, String sourceUri)
      throws Exception {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);

      Schema schema =
          Schema.of(
              Field.of("name", StandardSQLTypeName.STRING),
              Field.of("post_abbr", StandardSQLTypeName.STRING),
              Field.of("date", StandardSQLTypeName.DATE));

      // Configure time partitioning. For full list of options, see:
      // https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#TimePartitioning
      TimePartitioning partitioning =
          TimePartitioning.newBuilder(TimePartitioning.Type.DAY)
              .setField("date")
              .setExpirationMs(Duration.of(90, ChronoUnit.DAYS).toMillis())
              .build();

      LoadJobConfiguration loadJobConfig =
          LoadJobConfiguration.builder(tableId, sourceUri)
              .setFormatOptions(FormatOptions.csv())
              .setSchema(schema)
              .setTimePartitioning(partitioning)
              .build();

      // Create a job ID so that we can safely retry.
      JobId jobId = JobId.of(UUID.randomUUID().toString());
      Job loadJob = bigquery.create(JobInfo.newBuilder(loadJobConfig).setJobId(jobId).build());

      // Load data from a GCS parquet file into the table
      // Blocks until this load table job completes its execution, either failing or succeeding.
      Job completedJob = loadJob.waitFor();

      // Check for errors
      if (completedJob == null) {
        throw new Exception("Job not executed since it no longer exists.");
      } else if (completedJob.getStatus().getError() != null) {
        // You can also look at queryJob.getStatus().getExecutionErrors() for all
        // errors, not just the latest one.
        throw new Exception(
            "BigQuery was unable to load into the table due to an error: \n"
                + loadJob.getStatus().getError());
      }
      System.out.println("Data successfully loaded into time partitioned table during load job");
    } catch (BigQueryException | InterruptedException e) {
      System.out.println(
          "Data not loaded into time partitioned table during load job \n" + e.toString());
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Node.js API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

// Import the Google Cloud client libraries
const {BigQuery} = require('@google-cloud/bigquery');
const {Storage} = require('@google-cloud/storage');

// Instantiate clients
const bigquery = new BigQuery();
const storage = new Storage();

/**
 * This sample loads the CSV file at
 * https://storage.googleapis.com/cloud-samples-data/bigquery/us-states/us-states.csv
 *
 * TODO(developer): Replace the following lines with the path to your file.
 */
const bucketName = 'cloud-samples-data';
const filename = 'bigquery/us-states/us-states-by-date.csv';

async function loadTablePartitioned() {
  // Load data into a table that uses column-based time partitioning.

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = 'my_dataset';
  // const tableId = 'my_new_table';

  // Configure the load job. For full list of options, see:
  // https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationLoad
  const partitionConfig = {
    type: 'DAY',
    expirationMs: '7776000000', // 90 days
    field: 'date',
  };

  const metadata = {
    sourceFormat: 'CSV',
    skipLeadingRows: 1,
    schema: {
      fields: [
        {name: 'name', type: 'STRING'},
        {name: 'post_abbr', type: 'STRING'},
        {name: 'date', type: 'DATE'},
      ],
    },
    location: 'US',
    timePartitioning: partitionConfig,
  };

  // Load data from a Google Cloud Storage file into the table
  const [job] = await bigquery
    .dataset(datasetId)
    .table(tableId)
    .load(storage.bucket(bucketName).file(filename), metadata);

  // load() waits for the job to finish
  console.log(`Job ${job.id} completed.`);
}

Python

Before trying this sample, follow the Python setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Python API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name"

job_config = bigquery.LoadJobConfig(
    schema=[
        bigquery.SchemaField("name", "STRING"),
        bigquery.SchemaField("post_abbr", "STRING"),
        bigquery.SchemaField("date", "DATE"),
    ],
    skip_leading_rows=1,
    time_partitioning=bigquery.TimePartitioning(
        type_=bigquery.TimePartitioningType.DAY,
        field="date",  # Name of the column to use for partitioning.
        expiration_ms=7776000000,  # 90 days.
    ),
)
uri = "gs://cloud-samples-data/bigquery/us-states/us-states-by-date.csv"

load_job = client.load_table_from_uri(
    uri, table_id, job_config=job_config
)  # Make an API request.

load_job.result()  # Wait for the job to complete.

table = client.get_table(table_id)
print("Loaded {} rows to table {}".format(table.num_rows, table_id))

Appending to or overwriting a table with CSV data

You can load additional data into a table either from source files or by appending query results.

In the Google Cloud console, use the Write preference option to specify what action to take when you load data from a source file or from a query result.

You have the following options when you load additional data into a table:

Console option bq tool flag BigQuery API property Description
Write if empty Not supported WRITE_EMPTY Writes the data only if the table is empty.
Append to table --noreplace or --replace=false; if --[no]replace is unspecified, the default is append WRITE_APPEND (Default) Appends the data to the end of the table.
Overwrite table --replace or --replace=true WRITE_TRUNCATE Erases all existing data in a table before writing the new data. This action also deletes the table schema and removes any Cloud KMS key.

If you load data into an existing table, the load job can append the data or overwrite the table.

Console

  1. In the Google Cloud console, go to the BigQuery page.

    Go to BigQuery

  2. In the Explorer pane, expand your project, and then select a dataset.
  3. In the Dataset info section, click Create table.
  4. In the Create table panel, specify the following details:
    1. In the Source section, select Google Cloud Storage in the Create table from list. Then, do the following:
      1. Select a file from the Cloud Storage bucket, or enter the Cloud Storage URI. You cannot include multiple URIs in the Google Cloud console, but wildcards are supported. The Cloud Storage bucket must be in the same location as the dataset that contains the table you want to create, append, or overwrite. select source file to create a BigQuery table
      2. For File format, select CSV.
    2. In the Destination section, specify the following details:
      1. For Dataset, select the dataset in which you want to create the table.
      2. In the Table field, enter the name of the table that you want to create.
      3. Verify that the Table type field is set to Native table.
    3. In the Schema section, enter the schema definition. To enable the auto detection of a schema, select Auto detect. You can enter schema information manually by using one of the following methods:
      • Option 1: Click Edit as text and paste the schema in the form of a JSON array. When you use a JSON array, you generate the schema using the same process as creating a JSON schema file. You can view the schema of an existing table in JSON format by entering the following command:
            bq show --format=prettyjson dataset.table
            
      • Option 2: Click Add field and enter the table schema. Specify each field's Name, Type, and Mode.
    4. Optional: Specify Partition and cluster settings. For more information, see Creating partitioned tables and Creating and using clustered tables. You cannot convert a table to a partitioned or clustered table by appending or overwriting it. The Google Cloud console does not support appending to or overwriting partitioned or clustered tables in a load job.
    5. Click Advanced options and do the following:
      • For Write preference, choose Append to table or Overwrite table.
      • For Number of errors allowed, accept the default value of 0 or enter the maximum number of rows containing errors that can be ignored. If the number of rows with errors exceeds this value, the job will result in an invalid message and fail. This option applies only to CSV and JSON files.
      • If you want to ignore values in a row that are not present in the table's schema, then select Unknown values.
      • For Field delimiter, choose the character that separates the cells in your CSV file: Comma, Tab, Pipe, or Custom. If you choose Custom, enter the delimiter in the Custom field delimiter box. The default value is Comma.
      • For Header rows to skip, enter the number of header rows to skip at the top of the CSV file. The default value is 0.
      • For Quoted newlines, check Allow quoted newlines to allow quoted data sections that contain newline characters in a CSV file. The default value is false.
      • For Jagged rows, check Allow jagged rows to accept rows in CSV files that are missing trailing optional columns. The missing values are treated as nulls. If unchecked, records with missing trailing columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. The default value is false.
      • For Encryption, click Customer-managed key to use a Cloud Key Management Service key. If you leave the Google-managed key setting, BigQuery encrypts the data at rest.
    6. Click Create table.

SQL

Use the LOAD DATA DDL statement (Preview). The following example appends a CSV file to the table mytable:

  1. In the Google Cloud console, go to the BigQuery page.

    Go to BigQuery

  2. In the query editor, enter the following statement:

    LOAD DATA INTO mydataset.mytable
    FROM FILES (
      format = 'CSV',
      uris = ['gs://bucket/path/file.csv']);
    

  3. Click Run.

For more information about how to run queries, see Running interactive queries.

bq

Use the bq load command, specify CSV using the --source_format flag, and include a Cloud Storage URI. You can include a single URI, a comma-separated list of URIs, or a URI containing a wildcard.

Supply the schema inline, in a schema definition file, or use schema auto-detect. If you don't specify a schema, and --autodetect is false, and the destination table exists, then the schema of the destination table is used.

Specify the --replace flag to overwrite the table. Use the --noreplace flag to append data to the table. If no flag is specified, the default is to append data.

It is possible to modify the table's schema when you append or overwrite it. For more information on supported schema changes during a load operation, see Modifying table schemas.

(Optional) Supply the --location flag and set the value to your location.

Other optional flags include:

  • --allow_jagged_rows: When specified, accept rows in CSV files that are missing trailing optional columns. The missing values are treated as nulls. If unchecked, records with missing trailing columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. The default value is false.
  • --allow_quoted_newlines: When specified, allows quoted data sections that contain newline characters in a CSV file. The default value is false.
  • --field_delimiter: The character that indicates the boundary between columns in the data. Both \t and tab are allowed for tab delimiters. The default value is ,.
  • --null_marker: An optional custom string that represents a NULL value in CSV data.
  • --skip_leading_rows: Specifies the number of header rows to skip at the top of the CSV file. The default value is 0.
  • --quote: The quote character to use to enclose records. The default value is ". To indicate no quote character, use an empty string.
  • --max_bad_records: An integer that specifies the maximum number of bad records allowed before the entire job fails. The default value is 0. At most, five errors of any type are returned regardless of the --max_bad_records value.
  • --ignore_unknown_values: When specified, allows and ignores extra, unrecognized values in CSV or JSON data.
  • --autodetect: When specified, enable schema auto-detection for CSV and JSON data.
  • --destination_kms_key: The Cloud KMS key for encryption of the table data.
bq --location=location load \
--[no]replace \
--source_format=format \
dataset.table \
path_to_source \
schema

where:

  • location is your location. The --location flag is optional. You can set a default value for the location using the .bigqueryrc file.
  • format is CSV.
  • dataset is an existing dataset.
  • table is the name of the table into which you're loading data.
  • path_to_source is a fully-qualified Cloud Storage URI or a comma-separated list of URIs. Wildcards are also supported.
  • schema is a valid schema. The schema can be a local JSON file, or it can be typed inline as part of the command. You can also use the --autodetect flag instead of supplying a schema definition.

Examples:

The following command loads data from gs://mybucket/mydata.csv and overwrites a table named mytable in mydataset. The schema is defined using schema auto-detection.

    bq load \
    --autodetect \
    --replace \
    --source_format=CSV \
    mydataset.mytable \
    gs://mybucket/mydata.csv

The following command loads data from gs://mybucket/mydata.csv and appends data to a table named mytable in mydataset. The schema is defined using a JSON schema file — myschema.json.

    bq load \
    --noreplace \
    --source_format=CSV \
    mydataset.mytable \
    gs://mybucket/mydata.csv \
    ./myschema.json

API

  1. Create a load job that points to the source data in Cloud Storage.

  2. (Optional) Specify your location in the location property in the jobReference section of the job resource.

  3. The source URIs property must be fully-qualified, in the format gs://bucket/object. You can include multiple URIs as a comma-separated list. Note that wildcards are also supported.

  4. Specify the data format by setting the configuration.load.sourceFormat property to CSV.

  5. Specify the write preference by setting the configuration.load.writeDisposition property to WRITE_TRUNCATE or WRITE_APPEND.

Go

Before trying this sample, follow the Go setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Go API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// importCSVTruncate demonstrates loading data from CSV data in Cloud Storage and overwriting/truncating
// data in the existing table.
func importCSVTruncate(projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %v", err)
	}
	defer client.Close()

	gcsRef := bigquery.NewGCSReference("gs://cloud-samples-data/bigquery/us-states/us-states.csv")
	gcsRef.SourceFormat = bigquery.CSV
	gcsRef.AutoDetect = true
	gcsRef.SkipLeadingRows = 1
	loader := client.Dataset(datasetID).Table(tableID).LoaderFrom(gcsRef)
	loader.WriteDisposition = bigquery.WriteTruncate

	job, err := loader.Run(ctx)
	if err != nil {
		return err
	}
	status, err := job.Wait(ctx)
	if err != nil {
		return err
	}

	if status.Err() != nil {
		return fmt.Errorf("job completed with error: %v", status.Err())
	}
	return nil
}

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.