Generare testo utilizzando la funzione ML.GENERATE_TEXT

Questo documento mostra come creare un modello remoto BigQuery ML che rappresenti un modello Vertex AI ospitato. Il modello Vertex AI ospitato può essere un modello di testo o multimodale Vertex AI integrato o un modello Claude di Anthropic. A seconda del modello Vertex AI scelto, puoi quindi utilizzare la funzione ML.GENERATE_TEXT per analizzare i dati non strutturati nelle tabelle di oggetti o il testo nelle tabelle standard.

Autorizzazioni obbligatorie

  • Per creare una connessione, devi disporre dell'appartenenza al seguente ruolo IAM (Identity and Access Management):

    • roles/bigquery.connectionAdmin
  • Per concedere le autorizzazioni all'account di servizio della connessione, devi disporre della seguente autorizzazione:

    • resourcemanager.projects.setIamPolicy
  • Per creare il modello utilizzando BigQuery ML, sono necessarie le seguenti autorizzazioni IAM:

    • bigquery.jobs.create
    • bigquery.models.create
    • bigquery.models.getData
    • bigquery.models.updateData
    • bigquery.models.updateMetadata
  • Per eseguire l'inferenza, devi disporre delle seguenti autorizzazioni:

    • bigquery.tables.getData sul tavolo
    • bigquery.models.getData sul modello
    • bigquery.jobs.create

Prima di iniziare

  1. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  2. Make sure that billing is enabled for your Google Cloud project.

  3. Enable the BigQuery, BigQuery Connection, and Vertex AI APIs.

    Enable the APIs

Crea una connessione

Crea una connessione risorsa Cloud e recupera l'account di servizio della connessione.

Seleziona una delle seguenti opzioni:

Console

  1. Vai alla pagina BigQuery.

    Vai a BigQuery

  2. Per creare una connessione, fai clic su Aggiungi e poi su Connessioni a origini dati esterne.

  3. Nell'elenco Tipo di connessione, seleziona Modelli remoti di Vertex AI, funzioni remote e BigLake (risorsa Cloud).

  4. Nel campo ID connessione, inserisci un nome per la connessione.

  5. Fai clic su Crea connessione.

  6. Fai clic su Vai alla connessione.

  7. Nel riquadro Informazioni sulla connessione, copia l'ID account di servizio da utilizzare in un passaggio successivo.

bq

  1. In un ambiente a riga di comando, crea una connessione:

    bq mk --connection --location=REGION --project_id=PROJECT_ID \
        --connection_type=CLOUD_RESOURCE CONNECTION_ID

    Il parametro --project_id sostituisce il progetto predefinito.

    Sostituisci quanto segue:

    • REGION: la regione di connessione
    • PROJECT_ID: il tuo ID progetto Google Cloud
    • CONNECTION_ID: un ID per la connessione

    Quando crei una risorsa di connessione, BigQuery crea un account di servizio di sistema unico e lo associa alla connessione.

    Risoluzione dei problemi: se ricevi il seguente errore di connessione, aggiorna Google Cloud SDK:

    Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
    
  2. Recupera e copia l'ID account di servizio per utilizzarlo in un passaggio successivo:

    bq show --connection PROJECT_ID.REGION.CONNECTION_ID

    L'output è simile al seguente:

    name                          properties
    1234.REGION.CONNECTION_ID     {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
    

Terraform

Utilizza la risorsa google_bigquery_connection.

Per autenticarti in BigQuery, configura le credenziali predefinite dell'applicazione. Per saperne di più, vedi Configurare l'autenticazione per le librerie client.

L'esempio seguente crea una connessione risorsa Cloud denominata my_cloud_resource_connection nella regione US:


# This queries the provider for project information.
data "google_project" "default" {}

# This creates a cloud resource connection in the US region named my_cloud_resource_connection.
# Note: The cloud resource nested object has only one output field - serviceAccountId.
resource "google_bigquery_connection" "default" {
  connection_id = "my_cloud_resource_connection"
  project       = data.google_project.default.project_id
  location      = "US"
  cloud_resource {}
}

Per applicare la configurazione Terraform in un progetto Google Cloud, completa i passaggi nelle seguenti sezioni.

Prepara Cloud Shell

  1. Avvia Cloud Shell.
  2. Imposta il progetto Google Cloud predefinito in cui vuoi applicare le configurazioni Terraform.

    Devi eseguire questo comando una sola volta per progetto e puoi farlo in qualsiasi directory.

    export GOOGLE_CLOUD_PROJECT=PROJECT_ID

    Le variabili di ambiente vengono sostituite se imposti valori espliciti nel file di configurazione Terraform.

Prepara la directory

Ogni file di configurazione di Terraform deve avere una propria directory (chiamata anche modulo principale).

  1. In Cloud Shell, crea una directory e un nuovo file al suo interno. Il nome file deve avere l'estensione .tf, ad esempio main.tf. In questo tutorial, il file è denominato main.tf.
    mkdir DIRECTORY && cd DIRECTORY && touch main.tf
  2. Se stai seguendo un tutorial, puoi copiare il codice campione in ogni sezione o passaggio.

    Copia il codice campione nel file main.tf appena creato.

    Se vuoi, copia il codice da GitHub. Questa opzione è consigliata quando lo snippet Terraform fa parte di una soluzione end-to-end.

  3. Esamina e modifica i parametri di esempio da applicare al tuo ambiente.
  4. Salva le modifiche.
  5. Inizializza Terraform. Devi eseguire questa operazione una sola volta per directory.
    terraform init

    Se vuoi, per utilizzare la versione più recente del provider Google, includi l'opzione -upgrade:

    terraform init -upgrade

Applica le modifiche

  1. Rivedi la configurazione e verifica che le risorse che Terraform sta per creare o aggiornare corrispondano alle tue aspettative:
    terraform plan

    Apporta le correzioni necessarie alla configurazione.

  2. Applica la configurazione di Terraform eseguendo il seguente comando e inserendo yes al prompt:
    terraform apply

    Attendi che Terraform mostri il messaggio "Applicazione completata".

  3. Apri il tuo progetto Google Cloud per visualizzare i risultati. Nella console Google Cloud, vai alle risorse nell'interfaccia utente per assicurarti che Terraform le abbia create o aggiornate.

Concedi l'accesso all'account di servizio

Concedi all'account di servizio della connessione il ruolo Utente Vertex AI.

Se prevedi di specificare l'endpoint come URL quando crei il modello remoto, ad esempio endpoint = 'https://us-central1-aiplatform.googleapis.com/v1/projects/myproject/locations/us-central1/publishers/google/models/text-embedding-004', concedi questo ruolo nello stesso progetto specificato nell'URL.

Se prevedi di specificare l'endpoint utilizzando il nome del modello quando crei il modello remoto, ad esempio endpoint = 'text-embedding-004', concedi questo ruolo nello stesso progetto in cui prevedi di creare il modello remoto.

Se concedi il ruolo in un progetto diverso, viene visualizzato l'errore bqcx-1234567890-xxxx@gcp-sa-bigquery-condel.iam.gserviceaccount.com does not have the permission to access resource.

Per concedere il ruolo, segui questi passaggi:

Console

  1. Vai alla pagina IAM e amministrazione.

    Vai a IAM e amministrazione

  2. Fai clic su Aggiungi.

    Viene visualizzata la finestra di dialogo Aggiungi entità.

  3. Nel campo Nuove entità, inserisci l'ID account di servizio che hai copiato in precedenza.

  4. Nel campo Seleziona un ruolo, seleziona Vertex AI e poi Utente Vertex AI.

  5. Fai clic su Salva.

gcloud

Utilizza il comando gcloud projects add-iam-policy-binding.

gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/aiplatform.user' --condition=None

Sostituisci quanto segue:

  • PROJECT_NUMBER: il numero del progetto
  • MEMBER: l'ID account di servizio che hai copiato in precedenza

Attiva il modello Vertex AI

Questo passaggio è necessario solo se utilizzi un modello Claude.

  1. Nella console Google Cloud, vai alla pagina Model Garden di Vertex AI.

    Vai a Model Garden

  2. Cerca o sfoglia per trovare il modello Claude che vuoi utilizzare.

  3. Fai clic sulla scheda del modello.

  4. Nella pagina del modello, fai clic su Attiva.

  5. Compila le informazioni di attivazione richieste e fai clic su Avanti.

  6. Nella sezione Termini e condizioni, seleziona la casella di controllo.

  7. Fai clic su Accetto per accettare i termini e le condizioni e attivare il modello.

Creare un modello remoto BigQuery ML

  1. Nella console Google Cloud, vai alla pagina BigQuery.

    Vai a BigQuery

  2. Utilizza l'editor SQL per creare un modello remoto:

    CREATE OR REPLACE MODEL
    `PROJECT_ID.DATASET_ID.MODEL_NAME`
    REMOTE WITH CONNECTION `PROJECT_ID.REGION.CONNECTION_ID`
    OPTIONS (ENDPOINT = 'ENDPOINT');

    Sostituisci quanto segue:

    • PROJECT_ID: il tuo ID progetto
    • DATASET_ID: l'ID del set di dati che deve contenere il modello. Questo set di dati deve trovarsi nella stessa località della connessione che stai utilizzando
    • MODEL_NAME: il nome del modello
    • REGION: la regione utilizzata dalla connessione
    • CONNECTION_ID: l'ID della connessione BigQuery

      Quando visualizzi i dettagli della connessione nella console Google Cloud, questo è il valore nell'ultima sezione dell'ID connessione visualizzato in ID connessione, ad esempio projects/myproject/locations/connection_location/connections/myconnection

    • ENDPOINT: il nome del modello Vertex AI supportato da utilizzare.

      Per alcuni tipi di modelli, puoi specificare una determinata versione del modello. Per informazioni sulle ENDPOINT versioni dei modelli supportate per i diversi tipi di modelli,

Generare testo da dati di testo utilizzando un prompt di una tabella

Genera il testo utilizzando la funzione ML.GENERATE_TEXT con un modello remoto e i dati del prompt di una colonna della tabella:

gemini-1.5-flash

SELECT *
FROM ML.GENERATE_TEXT(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  TABLE PROJECT_ID.DATASET_ID.TABLE_NAME,
  STRUCT(TOKENS AS max_output_tokens, TEMPERATURE AS temperature,
  TOP_P AS top_p, FLATTEN_JSON AS flatten_json_output,
  STOP_SEQUENCES AS stop_sequences,
  GROUND_WITH_GOOGLE_SEARCH AS ground_with_google_search,
  SAFETY_SETTINGS AS safety_settings)
);

Sostituisci quanto segue:

  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che contiene il modello.
  • MODEL_NAME: il nome del modello.
  • TABLE_NAME: il nome della tabella che contiene il prompt. Questa tabella deve avere una colonna denominata prompt oppure puoi utilizzare un alias per utilizzare una colonna con un nome diverso.
  • TOKENS: un valore INT64 che imposta il numero massimo di token che possono essere generati nella risposta. Questo valore deve essere compreso nell'intervallo [1,8192]. Specifica un valore più basso per risposte più brevi e un valore più alto per risposte più lunghe. Il valore predefinito è 128.
  • TEMPERATURE: un valore FLOAT64 nell'intervallo [0.0,2.0] che controlla il grado di casualità nella selezione dei token. Il valore predefinito è 0.

    I valori più bassi per temperature sono ideali per prompt che richiedono risposte più deterministiche e meno aperte o creative, mentre i valori più alti per temperature possono portare a risultati più diversificati o creativi. Un valore 0 per temperature è deterministico, il che significa che viene sempre selezionata la risposta con la probabilità più alta.

  • TOP_P: un valore FLOAT64 nell'intervallo [0.0,1.0] consente di determinare la probabilità dei token selezionati. Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali. Il valore predefinito è 0.95.
  • FLATTEN_JSON: un valore BOOL che determina se restituire il testo generato e gli attributi di sicurezza in colonne separate. Il valore predefinito è FALSE.
  • STOP_SEQUENCES: un valore ARRAY<STRING> che rimuove le stringhe specificate se sono incluse nelle risposte del modello. Le stringhe vengono associate esattamente, incluse le lettere maiuscole. Il valore predefinito è un array vuoto.
  • GROUND_WITH_GOOGLE_SEARCH: un valore BOOL che determina se il modello Vertex AI utilizza la basamento con la Ricerca Google per generare le risposte. La fondatezza consente al modello di utilizzare informazioni aggiuntive di internet durante la generazione di una risposta, in modo da rendere le risposte del modello più specifiche e oggettive. Quando sia flatten_json_output sia questo campo sono impostati su True, nei risultati viene inclusa un'altra colonna ml_generate_text_grounding_result che fornisce le origini utilizzate dal modello per raccogliere informazioni aggiuntive. Il valore predefinito è FALSE.
  • SAFETY_SETTINGS: un valore ARRAY<STRUCT<STRING AS category, STRING AS threshold>> che configura le soglie di sicurezza dei contenuti per filtrare le risposte. Il primo elemento della struttura specifica una categoria di danno e il secondo elemento della struttura specifica una soglia di blocco corrispondente. Il modello filtra i contenuti che violano queste impostazioni. Puoi specificare ogni categoria una sola volta. Ad esempio, non puoi specificare sia STRUCT('HARM_CATEGORY_DANGEROUS_CONTENT' AS category, 'BLOCK_MEDIUM_AND_ABOVE' AS threshold) che STRUCT('HARM_CATEGORY_DANGEROUS_CONTENT' AS category, 'BLOCK_ONLY_HIGH' AS threshold). Se non è presente un'impostazione di sicurezza per una determinata categoria, viene utilizzata l'impostazione di sicurezza BLOCK_MEDIUM_AND_ABOVE.

    Le categorie supportate sono le seguenti:

    • HARM_CATEGORY_HATE_SPEECH
    • HARM_CATEGORY_DANGEROUS_CONTENT
    • HARM_CATEGORY_HARASSMENT
    • HARM_CATEGORY_SEXUALLY_EXPLICIT

    Le soglie supportate sono le seguenti:

    • BLOCK_NONE (Accesso limitato)
    • BLOCK_LOW_AND_ABOVE
    • BLOCK_MEDIUM_AND_ABOVE (valore predefinito)
    • BLOCK_ONLY_HIGH
    • HARM_BLOCK_THRESHOLD_UNSPECIFIED

    Per ulteriori informazioni, consulta la definizione di categoria di sicurezza e soglia di blocco.

Esempio

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Utilizza la colonna prompt della tabella prompts per il prompt.
  • Restituisce il testo generato e gli attributi di sicurezza in colonne separate.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    TABLE mydataset.prompts,
    STRUCT(TRUE AS flatten_json_output));

gemini-1.5-pro

SELECT *
FROM ML.GENERATE_TEXT(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  TABLE PROJECT_ID.DATASET_ID.TABLE_NAME,
  STRUCT(TOKENS AS max_output_tokens, TEMPERATURE AS temperature,
  TOP_P AS top_p, FLATTEN_JSON AS flatten_json_output,
  STOP_SEQUENCES AS stop_sequences,
  GROUND_WITH_GOOGLE_SEARCH AS ground_with_google_search,
  SAFETY_SETTINGS AS safety_settings)
);

Sostituisci quanto segue:

  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che contiene il modello.
  • MODEL_NAME: il nome del modello.
  • TABLE_NAME: il nome della tabella che contiene il prompt. Questa tabella deve avere una colonna denominata prompt oppure puoi utilizzare un alias per utilizzare una colonna con un nome diverso.
  • TOKENS: un valore INT64 che imposta il numero massimo di token che possono essere generati nella risposta. Questo valore deve essere compreso nell'intervallo [1,8192]. Specifica un valore più basso per risposte più brevi e un valore più alto per risposte più lunghe. Il valore predefinito è 128.
  • TEMPERATURE: un valore FLOAT64 nell'intervallo [0.0,2.0] che controlla il grado di casualità nella selezione dei token. Il valore predefinito è 0.

    I valori più bassi per temperature sono ideali per prompt che richiedono risposte più deterministiche e meno aperte o creative, mentre i valori più alti per temperature possono portare a risultati più diversificati o creativi. Un valore 0 per temperature è deterministico, il che significa che viene sempre selezionata la risposta con la probabilità più alta.

  • TOP_P: un valore FLOAT64 nell'intervallo [0.0,1.0] consente di determinare la probabilità dei token selezionati. Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali. Il valore predefinito è 0.95.
  • FLATTEN_JSON: un valore BOOL che determina se restituire il testo generato e gli attributi di sicurezza in colonne separate. Il valore predefinito è FALSE.
  • STOP_SEQUENCES: un valore ARRAY<STRING> che rimuove le stringhe specificate se sono incluse nelle risposte del modello. Le stringhe vengono associate esattamente, incluse le lettere maiuscole. Il valore predefinito è un array vuoto.
  • GROUND_WITH_GOOGLE_SEARCH: un valore BOOL che determina se il modello Vertex AI utilizza la basamento con la Ricerca Google per generare le risposte. La fondatezza consente al modello di utilizzare informazioni aggiuntive di internet durante la generazione di una risposta, in modo da rendere le risposte del modello più specifiche e oggettive. Quando sia flatten_json_output sia questo campo sono impostati su True, nei risultati viene inclusa un'altra colonna ml_generate_text_grounding_result che fornisce le origini utilizzate dal modello per raccogliere informazioni aggiuntive. Il valore predefinito è FALSE.
  • SAFETY_SETTINGS: un valore ARRAY<STRUCT<STRING AS category, STRING AS threshold>> che configura le soglie di sicurezza dei contenuti per filtrare le risposte. Il primo elemento della struttura specifica una categoria di danno e il secondo elemento della struttura specifica una soglia di blocco corrispondente. Il modello filtra i contenuti che violano queste impostazioni. Puoi specificare ogni categoria una sola volta. Ad esempio, non puoi specificare sia STRUCT('HARM_CATEGORY_DANGEROUS_CONTENT' AS category, 'BLOCK_MEDIUM_AND_ABOVE' AS threshold) che STRUCT('HARM_CATEGORY_DANGEROUS_CONTENT' AS category, 'BLOCK_ONLY_HIGH' AS threshold). Se non è presente un'impostazione di sicurezza per una determinata categoria, viene utilizzata l'impostazione di sicurezza BLOCK_MEDIUM_AND_ABOVE.

    Le categorie supportate sono le seguenti:

    • HARM_CATEGORY_HATE_SPEECH
    • HARM_CATEGORY_DANGEROUS_CONTENT
    • HARM_CATEGORY_HARASSMENT
    • HARM_CATEGORY_SEXUALLY_EXPLICIT

    Le soglie supportate sono le seguenti:

    • BLOCK_NONE (Accesso limitato)
    • BLOCK_LOW_AND_ABOVE
    • BLOCK_MEDIUM_AND_ABOVE (valore predefinito)
    • BLOCK_ONLY_HIGH
    • HARM_BLOCK_THRESHOLD_UNSPECIFIED

    Per ulteriori informazioni, consulta la definizione di categoria di sicurezza e soglia di blocco.

Esempio

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Utilizza la colonna prompt della tabella prompts per il prompt.
  • Restituisce il testo generato e gli attributi di sicurezza in colonne separate.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    TABLE mydataset.prompts,
    STRUCT(TRUE AS flatten_json_output));

gemini-pro

SELECT *
FROM ML.GENERATE_TEXT(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  TABLE PROJECT_ID.DATASET_ID.TABLE_NAME,
  STRUCT(TOKENS AS max_output_tokens, TEMPERATURE AS temperature,
  TOP_K AS top_k, TOP_P AS top_p, FLATTEN_JSON AS flatten_json_output,
  STOP_SEQUENCES AS stop_sequences,
  GROUND_WITH_GOOGLE_SEARCH AS ground_with_google_search,
  SAFETY_SETTINGS AS safety_settings)
);

Sostituisci quanto segue:

  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che contiene il modello.
  • MODEL_NAME: il nome del modello.
  • TABLE_NAME: il nome della tabella che contiene il prompt. Questa tabella deve avere una colonna denominata prompt oppure puoi utilizzare un alias per utilizzare una colonna con un nome diverso.
  • TOKENS: un valore INT64 che imposta il numero massimo di token che possono essere generati nella risposta. Questo valore deve essere compreso nell'intervallo [1,8192]. Specifica un valore più basso per risposte più brevi e un valore più alto per risposte più lunghe. Il valore predefinito è 128.
  • TEMPERATURE: un valore FLOAT64 nell'intervallo [0.0,1.0] che controlla il grado di casualità nella selezione dei token. Il valore predefinito è 0.

    I valori più bassi per temperature sono ideali per prompt che richiedono una risposta più deterministica e meno aperta o creativa, mentre i valori più alti per temperature possono portare a risultati più diversi o creativi. Un valore 0 per temperature è deterministico, il che significa che viene sempre selezionata la risposta con la probabilità più alta.

  • TOP_K: un valore INT64 nell'intervallo [1,40] che determina il pool iniziale di token preso in considerazione dal modello per la selezione. Specifica un valore più basso per risposte meno random e un valore più alto per risposte più random. Il valore predefinito è 40.
  • TOP_P: un valore FLOAT64 nell'intervallo [0.0,1.0] consente di determinare la probabilità dei token selezionati. Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali. Il valore predefinito è 0.95.
  • FLATTEN_JSON: un valore BOOL che determina se restituire il testo generato e gli attributi di sicurezza in colonne separate. Il valore predefinito è FALSE.
  • STOP_SEQUENCES: un valore ARRAY<STRING> che rimuove le stringhe specificate se sono incluse nelle risposte del modello. Le stringhe vengono associate esattamente, incluse le lettere maiuscole. Il valore predefinito è un array vuoto.
  • GROUND_WITH_GOOGLE_SEARCH: un valore BOOL che determina se il modello Vertex AI utilizza la basamento con la Ricerca Google per generare le risposte. La fondatezza consente al modello di utilizzare informazioni aggiuntive di internet durante la generazione di una risposta, in modo da rendere le risposte del modello più specifiche e oggettive. Quando sia flatten_json_output sia questo campo sono impostati su True, nei risultati viene inclusa un'altra colonna ml_generate_text_grounding_result che fornisce le origini utilizzate dal modello per raccogliere informazioni aggiuntive. Il valore predefinito è FALSE.
  • SAFETY_SETTINGS: un valore ARRAY<STRUCT<STRING AS category, STRING AS threshold>> che configura le soglie di sicurezza dei contenuti per filtrare le risposte. Il primo elemento della struttura specifica una categoria di danno e il secondo elemento della struttura specifica una soglia di blocco corrispondente. Il modello filtra i contenuti che violano queste impostazioni. Puoi specificare ogni categoria una sola volta. Ad esempio, non puoi specificare sia STRUCT('HARM_CATEGORY_DANGEROUS_CONTENT' AS category, 'BLOCK_MEDIUM_AND_ABOVE' AS threshold) che STRUCT('HARM_CATEGORY_DANGEROUS_CONTENT' AS category, 'BLOCK_ONLY_HIGH' AS threshold). Se non è presente un'impostazione di sicurezza per una determinata categoria, viene utilizzata l'impostazione di sicurezza BLOCK_MEDIUM_AND_ABOVE.

    Le categorie supportate sono le seguenti:

    • HARM_CATEGORY_HATE_SPEECH
    • HARM_CATEGORY_DANGEROUS_CONTENT
    • HARM_CATEGORY_HARASSMENT
    • HARM_CATEGORY_SEXUALLY_EXPLICIT

    Le soglie supportate sono le seguenti:

    • BLOCK_NONE (Accesso limitato)
    • BLOCK_LOW_AND_ABOVE
    • BLOCK_MEDIUM_AND_ABOVE (valore predefinito)
    • BLOCK_ONLY_HIGH
    • HARM_BLOCK_THRESHOLD_UNSPECIFIED

    Per ulteriori informazioni, consulta la definizione di categoria di sicurezza e soglia di blocco.

Esempio

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Utilizza la colonna prompt della tabella prompts per il prompt.
  • Restituisce una risposta breve e moderatamente probabile.
  • Appiattisce la risposta JSON in colonne separate.
  • Recupera e restituisce dati web pubblici per la definizione delle risposte.
  • Filtra le risposte non sicure utilizzando due impostazioni di sicurezza.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    TABLE mydataset.prompts,
    STRUCT(
      0.4 AS temperature, 100 AS max_output_tokens, 0.5 AS top_p,
      40 AS top_k, TRUE AS flatten_json_output,
      TRUE AS ground_with_google_search,
      [STRUCT('HARM_CATEGORY_HATE_SPEECH' AS category,
        'BLOCK_LOW_AND_ABOVE' AS threshold),
      STRUCT('HARM_CATEGORY_DANGEROUS_CONTENT' AS category,
        'BLOCK_MEDIUM_AND_ABOVE' AS threshold)] AS safety_settings));

Claude

SELECT *
FROM ML.GENERATE_TEXT(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  TABLE PROJECT_ID.DATASET_ID.TABLE_NAME,
  STRUCT(TOKENS AS max_output_tokens, TOP_K AS top_k,
  TOP_P AS top_p, FLATTEN_JSON AS flatten_json_output)
);

Sostituisci quanto segue:

  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che contiene il modello.
  • MODEL_NAME: il nome del modello.
  • TABLE_NAME: il nome della tabella che contiene il prompt. Questa tabella deve avere una colonna denominata prompt oppure puoi utilizzare un alias per utilizzare una colonna con un nome diverso.
  • TOKENS: un valore INT64 che imposta il numero massimo di token che possono essere generati nella risposta. Questo valore deve essere compreso nell'intervallo [1,4096]. Specifica un valore più basso per risposte più brevi e un valore più alto per risposte più lunghe. Il valore predefinito è 128.
  • TOP_K: un valore INT64 nell'intervallo [1,40] che determina il pool iniziale di token preso in considerazione dal modello per la selezione. Specifica un valore più basso per risposte meno random e un valore più alto per risposte più random. Se non specifichi un valore, il modello ne determina uno appropriato.
  • TOP_P: un valore FLOAT64 nell'intervallo [0.0,1.0] consente di determinare la probabilità dei token selezionati. Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali. Se non specifichi un valore, il modello ne determina uno appropriato.
  • FLATTEN_JSON: un valore BOOL che determina se restituire il testo generato e gli attributi di sicurezza in colonne separate. Il valore predefinito è FALSE.

Esempio

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Utilizza la colonna prompt della tabella prompts per il prompt.
  • Restituisce il testo generato e gli attributi di sicurezza in colonne separate.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    TABLE mydataset.prompts,
    STRUCT(TRUE AS flatten_json_output));

text-bison

SELECT *
FROM ML.GENERATE_TEXT(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  TABLE PROJECT_ID.DATASET_ID.TABLE_NAME,
  STRUCT(TOKENS AS max_output_tokens, TEMPERATURE AS temperature,
  TOP_K AS top_k, TOP_P AS top_p, FLATTEN_JSON AS flatten_json_output,
  STOP_SEQUENCES AS stop_sequences)
);

Sostituisci quanto segue:

  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che contiene il modello.
  • MODEL_NAME: il nome del modello.
  • TABLE_NAME: il nome della tabella che contiene il prompt. Questa tabella deve avere una colonna denominata prompt oppure puoi utilizzare un alias per utilizzare una colonna con un nome diverso.
  • TOKENS: un valore INT64 che imposta il numero massimo di token che possono essere generati nella risposta. Questo valore deve essere compreso nell'intervallo [1,1024]. Specifica un valore più basso per risposte più brevi e un valore più alto per risposte più lunghe. Il valore predefinito è 128.
  • TEMPERATURE: un valore FLOAT64 nell'intervallo [0.0,1.0] che controlla il grado di casualità nella selezione dei token. Il valore predefinito è 0.

    I valori più bassi per temperature sono ideali per prompt che richiedono una risposta più deterministica e meno aperta o creativa, mentre i valori più alti per temperature possono portare a risultati più diversi o creativi. Un valore 0 per temperature è deterministico, il che significa che viene sempre selezionata la risposta con la probabilità più alta.

  • TOP_K: un valore INT64 nell'intervallo [1,40] che determina il pool iniziale di token preso in considerazione dal modello per la selezione. Specifica un valore più basso per risposte meno random e un valore più alto per risposte più random. Il valore predefinito è 40.
  • TOP_P: un valore FLOAT64 nell'intervallo [0.0,1.0] consente di determinare la probabilità dei token selezionati. Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali. Il valore predefinito è 0.95.
  • FLATTEN_JSON: un valore BOOL che determina se restituire il testo generato e gli attributi di sicurezza in colonne separate. Il valore predefinito è FALSE.
  • STOP_SEQUENCES: un valore ARRAY<STRING> che rimuove le stringhe specificate se sono incluse nelle risposte del modello. Le stringhe vengono associate esattamente, incluse le lettere maiuscole. Il valore predefinito è un array vuoto.

Esempio

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Utilizza la colonna prompt della tabella prompts per il prompt.
  • Restituisce il testo generato e gli attributi di sicurezza in colonne separate.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    TABLE mydataset.prompts,
    STRUCT(TRUE AS flatten_json_output));

text-bison32

SELECT *
FROM ML.GENERATE_TEXT(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  TABLE PROJECT_ID.DATASET_ID.TABLE_NAME,
  STRUCT(TOKENS AS max_output_tokens, TEMPERATURE AS temperature,
  TOP_K AS top_k, TOP_P AS top_p, FLATTEN_JSON AS flatten_json_output,
  STOP_SEQUENCES AS stop_sequences)
);

Sostituisci quanto segue:

  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che contiene il modello.
  • MODEL_NAME: il nome del modello.
  • TABLE_NAME: il nome della tabella che contiene il prompt. Questa tabella deve avere una colonna denominata prompt oppure puoi utilizzare un alias per utilizzare una colonna con un nome diverso.
  • TOKENS: un valore INT64 che imposta il numero massimo di token che possono essere generati nella risposta. Questo valore deve essere compreso nell'intervallo [1,8192]. Specifica un valore più basso per risposte più brevi e un valore più alto per risposte più lunghe. Il valore predefinito è 128.
  • TEMPERATURE: un valore FLOAT64 nell'intervallo [0.0,1.0] che controlla il grado di casualità nella selezione dei token. Il valore predefinito è 0.

    I valori più bassi per temperature sono ideali per prompt che richiedono una risposta più deterministica e meno aperta o creativa, mentre i valori più alti per temperature possono portare a risultati più diversi o creativi. Un valore 0 per temperature è deterministico, il che significa che viene sempre selezionata la risposta con la probabilità più alta.

  • TOP_K: un valore INT64 nell'intervallo [1,40] che determina il pool iniziale di token preso in considerazione dal modello per la selezione. Specifica un valore più basso per risposte meno random e un valore più alto per risposte più random. Il valore predefinito è 40.
  • TOP_P: un valore FLOAT64 nell'intervallo [0.0,1.0] consente di determinare la probabilità dei token selezionati. Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali. Il valore predefinito è 0.95.
  • FLATTEN_JSON: un valore BOOL che determina se restituire il testo generato e gli attributi di sicurezza in colonne separate. Il valore predefinito è FALSE.
  • STOP_SEQUENCES: un valore ARRAY<STRING> che rimuove le stringhe specificate se sono incluse nelle risposte del modello. Le stringhe vengono associate esattamente, incluse le lettere maiuscole. Il valore predefinito è un array vuoto.

Esempio

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Utilizza la colonna prompt della tabella prompts per il prompt.
  • Restituisce il testo generato e gli attributi di sicurezza in colonne separate.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    TABLE mydataset.prompts,
    STRUCT(TRUE AS flatten_json_output));

text-unicorn

SELECT *
FROM ML.GENERATE_TEXT(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  TABLE PROJECT_ID.DATASET_ID.TABLE_NAME,
  STRUCT(TOKENS AS max_output_tokens, TEMPERATURE AS temperature,
  TOP_K AS top_k, TOP_P AS top_p, FLATTEN_JSON AS flatten_json_output,
  STOP_SEQUENCES AS stop_sequences)
);

Sostituisci quanto segue:

  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che contiene il modello.
  • MODEL_NAME: il nome del modello.
  • TABLE_NAME: il nome della tabella che contiene il prompt. Questa tabella deve avere una colonna denominata prompt oppure puoi utilizzare un alias per utilizzare una colonna con un nome diverso.
  • TOKENS: un valore INT64 che imposta il numero massimo di token che possono essere generati nella risposta. Questo valore deve essere compreso nell'intervallo [1,1024]. Specifica un valore più basso per risposte più brevi e un valore più alto per risposte più lunghe. Il valore predefinito è 128.
  • TEMPERATURE: un valore FLOAT64 nell'intervallo [0.0,1.0] che controlla il grado di casualità nella selezione dei token. Il valore predefinito è 0.

    I valori più bassi per temperature sono ideali per prompt che richiedono una risposta più deterministica e meno aperta o creativa, mentre i valori più alti per temperature possono portare a risultati più diversi o creativi. Un valore 0 per temperature è deterministico, il che significa che viene sempre selezionata la risposta con la probabilità più alta.

  • TOP_K: un valore INT64 nell'intervallo [1,40] che determina il pool iniziale di token preso in considerazione dal modello per la selezione. Specifica un valore più basso per risposte meno random e un valore più alto per risposte più random. Il valore predefinito è 40.
  • TOP_P: un valore FLOAT64 nell'intervallo [0.0,1.0] consente di determinare la probabilità dei token selezionati. Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali. Il valore predefinito è 0.95.
  • FLATTEN_JSON: un valore BOOL che determina se restituire il testo generato e gli attributi di sicurezza in colonne separate. Il valore predefinito è FALSE.
  • STOP_SEQUENCES: un valore ARRAY<STRING> che rimuove le stringhe specificate se sono incluse nelle risposte del modello. Le stringhe vengono associate esattamente, incluse le lettere maiuscole. Il valore predefinito è un array vuoto.

Esempio

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Utilizza la colonna prompt della tabella prompts per il prompt.
  • Restituisce il testo generato e gli attributi di sicurezza in colonne separate.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    TABLE mydataset.prompts,
    STRUCT(TRUE AS flatten_json_output));

Genera testo da dati di testo utilizzando un prompt di una query

Genera il testo utilizzando la funzione ML.GENERATE_TEXT con un modello remoto e una query che fornisce i dati del prompt:

gemini-1.5-flash

SELECT *
FROM ML.GENERATE_TEXT(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  (PROMPT_QUERY),
  STRUCT(TOKENS AS max_output_tokens, TEMPERATURE AS temperature,
  TOP_P AS top_p, FLATTEN_JSON AS flatten_json_output,
  STOP_SEQUENCES AS stop_sequences,
  GROUND_WITH_GOOGLE_SEARCH AS ground_with_google_search,
  SAFETY_SETTINGS AS safety_settings)
);
Sostituisci quanto segue:
  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che contiene il modello.
  • MODEL_NAME: il nome del modello.
  • PROMPT_QUERY: una query che fornisce i dati del prompt.
  • TOKENS: un valore INT64 che imposta il numero massimo di token che possono essere generati nella risposta. Questo valore deve essere compreso nell'intervallo [1,8192]. Specifica un valore più basso per risposte più brevi e un valore più alto per risposte più lunghe. Il valore predefinito è 128.
  • TEMPERATURE: un valore FLOAT64 nell'intervallo [0.0,2.0] che controlla il grado di casualità nella selezione dei token. Il valore predefinito è 0.

    I valori più bassi per temperature sono ideali per prompt che richiedono risposte più deterministiche e meno aperte o creative, mentre i valori più alti per temperature possono portare a risultati più diversificati o creativi. Un valore 0 per temperature è deterministico, il che significa che viene sempre selezionata la risposta con la probabilità più alta.

  • TOP_P: un valore FLOAT64 nell'intervallo [0.0,1.0] consente di determinare la probabilità dei token selezionati. Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali. Il valore predefinito è 0.95.
  • FLATTEN_JSON: un valore BOOL che determina se restituire il testo generato e gli attributi di sicurezza in colonne separate. Il valore predefinito è FALSE.
  • STOP_SEQUENCES: un valore ARRAY<STRING> che rimuove le stringhe specificate se sono incluse nelle risposte del modello. Le stringhe vengono associate esattamente, incluse le lettere maiuscole. Il valore predefinito è un array vuoto.
  • GROUND_WITH_GOOGLE_SEARCH: un valore BOOL che determina se il modello Vertex AI utilizza la basamento con la Ricerca Google per generare le risposte. La fondatezza consente al modello di utilizzare informazioni aggiuntive di internet durante la generazione di una risposta, in modo da rendere le risposte del modello più specifiche e oggettive. Quando sia flatten_json_output sia questo campo sono impostati su True, nei risultati viene inclusa un'altra colonna ml_generate_text_grounding_result che fornisce le origini utilizzate dal modello per raccogliere informazioni aggiuntive. Il valore predefinito è FALSE.
  • SAFETY_SETTINGS: un valore ARRAY<STRUCT<STRING AS category, STRING AS threshold>> che configura le soglie di sicurezza dei contenuti per filtrare le risposte. Il primo elemento della struttura specifica una categoria di danno e il secondo elemento della struttura specifica una soglia di blocco corrispondente. Il modello filtra i contenuti che violano queste impostazioni. Puoi specificare ogni categoria una sola volta. Ad esempio, non puoi specificare sia STRUCT('HARM_CATEGORY_DANGEROUS_CONTENT' AS category, 'BLOCK_MEDIUM_AND_ABOVE' AS threshold) che STRUCT('HARM_CATEGORY_DANGEROUS_CONTENT' AS category, 'BLOCK_ONLY_HIGH' AS threshold). Se non è presente un'impostazione di sicurezza per una determinata categoria, viene utilizzata l'impostazione di sicurezza BLOCK_MEDIUM_AND_ABOVE.

    Le categorie supportate sono le seguenti:

    • HARM_CATEGORY_HATE_SPEECH
    • HARM_CATEGORY_DANGEROUS_CONTENT
    • HARM_CATEGORY_HARASSMENT
    • HARM_CATEGORY_SEXUALLY_EXPLICIT

    Le soglie supportate sono le seguenti:

    • BLOCK_NONE (Accesso limitato)
    • BLOCK_LOW_AND_ABOVE
    • BLOCK_MEDIUM_AND_ABOVE (valore predefinito)
    • BLOCK_ONLY_HIGH
    • HARM_BLOCK_THRESHOLD_UNSPECIFIED

    Per ulteriori informazioni, consulta la definizione di categoria di sicurezza e soglia di blocco.

Esempio 1

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Richiede un riepilogo del testo nella colonna body della tabella articles.
  • Restituisce il testo generato e gli attributi di sicurezza in colonne separate.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    (
      SELECT CONCAT('Summarize this text', body) AS prompt
      FROM mydataset.articles
    ),
    STRUCT(TRUE AS flatten_json_output));

Esempio 2

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Utilizza una query per creare i dati del prompt concatenando stringhe che forniscono prefisso del prompt con le colonne della tabella.
  • Restituisce una risposta breve.
  • Non restituisce il testo generato e gli attributi di sicurezza in colonne separate.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    (
      SELECT CONCAT(question, 'Text:', description, 'Category') AS prompt
      FROM mydataset.input_table
    ),
    STRUCT(
      100 AS max_output_tokens, FALSE AS flatten_json_output));

gemini-1.5-pro

SELECT *
FROM ML.GENERATE_TEXT(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  (PROMPT_QUERY),
  STRUCT(TOKENS AS max_output_tokens, TEMPERATURE AS temperature,
  TOP_P AS top_p, FLATTEN_JSON AS flatten_json_output,
  STOP_SEQUENCES AS stop_sequences,
  GROUND_WITH_GOOGLE_SEARCH AS ground_with_google_search,
  SAFETY_SETTINGS AS safety_settings)
);
Sostituisci quanto segue:
  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che contiene il modello.
  • MODEL_NAME: il nome del modello.
  • PROMPT_QUERY: una query che fornisce i dati del prompt.
  • TOKENS: un valore INT64 che imposta il numero massimo di token che possono essere generati nella risposta. Questo valore deve essere compreso nell'intervallo [1,8192]. Specifica un valore più basso per risposte più brevi e un valore più alto per risposte più lunghe. Il valore predefinito è 128.
  • TEMPERATURE: un valore FLOAT64 nell'intervallo [0.0,2.0] che controlla il grado di casualità nella selezione dei token. Il valore predefinito è 0.

    I valori più bassi per temperature sono ideali per prompt che richiedono risposte più deterministiche e meno aperte o creative, mentre i valori più alti per temperature possono portare a risultati più diversificati o creativi. Un valore 0 per temperature è deterministico, il che significa che viene sempre selezionata la risposta con la probabilità più alta.

  • TOP_P: un valore FLOAT64 nell'intervallo [0.0,1.0] consente di determinare la probabilità dei token selezionati. Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali. Il valore predefinito è 0.95.
  • FLATTEN_JSON: un valore BOOL che determina se restituire il testo generato e gli attributi di sicurezza in colonne separate. Il valore predefinito è FALSE.
  • STOP_SEQUENCES: un valore ARRAY<STRING> che rimuove le stringhe specificate se sono incluse nelle risposte del modello. Le stringhe vengono associate esattamente, incluse le lettere maiuscole. Il valore predefinito è un array vuoto.
  • GROUND_WITH_GOOGLE_SEARCH: un valore BOOL che determina se il modello Vertex AI utilizza la basamento con la Ricerca Google per generare le risposte. La fondatezza consente al modello di utilizzare informazioni aggiuntive di internet durante la generazione di una risposta, in modo da rendere le risposte del modello più specifiche e oggettive. Quando sia flatten_json_output sia questo campo sono impostati su True, nei risultati viene inclusa un'altra colonna ml_generate_text_grounding_result che fornisce le origini utilizzate dal modello per raccogliere informazioni aggiuntive. Il valore predefinito è FALSE.
  • SAFETY_SETTINGS: un valore ARRAY<STRUCT<STRING AS category, STRING AS threshold>> che configura le soglie di sicurezza dei contenuti per filtrare le risposte. Il primo elemento della struttura specifica una categoria di danno e il secondo elemento della struttura specifica una soglia di blocco corrispondente. Il modello filtra i contenuti che violano queste impostazioni. Puoi specificare ogni categoria una sola volta. Ad esempio, non puoi specificare sia STRUCT('HARM_CATEGORY_DANGEROUS_CONTENT' AS category, 'BLOCK_MEDIUM_AND_ABOVE' AS threshold) che STRUCT('HARM_CATEGORY_DANGEROUS_CONTENT' AS category, 'BLOCK_ONLY_HIGH' AS threshold). Se non è presente un'impostazione di sicurezza per una determinata categoria, viene utilizzata l'impostazione di sicurezza BLOCK_MEDIUM_AND_ABOVE.

    Le categorie supportate sono le seguenti:

    • HARM_CATEGORY_HATE_SPEECH
    • HARM_CATEGORY_DANGEROUS_CONTENT
    • HARM_CATEGORY_HARASSMENT
    • HARM_CATEGORY_SEXUALLY_EXPLICIT

    Le soglie supportate sono le seguenti:

    • BLOCK_NONE (Accesso limitato)
    • BLOCK_LOW_AND_ABOVE
    • BLOCK_MEDIUM_AND_ABOVE (valore predefinito)
    • BLOCK_ONLY_HIGH
    • HARM_BLOCK_THRESHOLD_UNSPECIFIED

    Per ulteriori informazioni, consulta la definizione di categoria di sicurezza e soglia di blocco.

Esempio 1

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Richiede un riepilogo del testo nella colonna body della tabella articles.
  • Restituisce il testo generato e gli attributi di sicurezza in colonne separate.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    (
      SELECT CONCAT('Summarize this text', body) AS prompt
      FROM mydataset.articles
    ),
    STRUCT(TRUE AS flatten_json_output));

Esempio 2

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Utilizza una query per creare i dati del prompt concatenando stringhe che forniscono prefisso del prompt con le colonne della tabella.
  • Restituisce una risposta breve.
  • Non restituisce il testo generato e gli attributi di sicurezza in colonne separate.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    (
      SELECT CONCAT(question, 'Text:', description, 'Category') AS prompt
      FROM mydataset.input_table
    ),
    STRUCT(
      100 AS max_output_tokens, FALSE AS flatten_json_output));

gemini-pro

SELECT *
FROM ML.GENERATE_TEXT(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  (PROMPT_QUERY),
  STRUCT(TOKENS AS max_output_tokens, TEMPERATURE AS temperature,
  TOP_K AS top_k, TOP_P AS top_p, FLATTEN_JSON AS flatten_json_output,
  STOP_SEQUENCES AS stop_sequences,
  GROUND_WITH_GOOGLE_SEARCH AS ground_with_google_search,
  SAFETY_SETTINGS AS safety_settings)
);
Sostituisci quanto segue:
  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che contiene il modello.
  • MODEL_NAME: il nome del modello.
  • PROMPT_QUERY: una query che fornisce i dati del prompt.
  • TOKENS: un valore INT64 che imposta il numero massimo di token che possono essere generati nella risposta. Questo valore deve essere compreso nell'intervallo [1,8192]. Specifica un valore più basso per risposte più brevi e un valore più alto per risposte più lunghe. Il valore predefinito è 128.
  • TEMPERATURE: un valore FLOAT64 nell'intervallo [0.0,1.0] che controlla il grado di casualità nella selezione dei token. Il valore predefinito è 0.

    I valori più bassi per temperature sono ideali per prompt che richiedono una risposta più deterministica e meno aperta o creativa, mentre i valori più alti per temperature possono portare a risultati più diversi o creativi. Un valore 0 per temperature è deterministico, il che significa che viene sempre selezionata la risposta con la probabilità più alta.

  • TOP_K: un valore INT64 nell'intervallo [1,40] che determina il pool iniziale di token preso in considerazione dal modello per la selezione. Specifica un valore più basso per risposte meno random e un valore più alto per risposte più random. Il valore predefinito è 40.
  • TOP_P: un valore FLOAT64 nell'intervallo [0.0,1.0] consente di determinare la probabilità dei token selezionati. Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali. Il valore predefinito è 0.95.
  • FLATTEN_JSON: un valore BOOL che determina se restituire il testo generato e gli attributi di sicurezza in colonne separate. Il valore predefinito è FALSE.
  • STOP_SEQUENCES: un valore ARRAY<STRING> che rimuove le stringhe specificate se sono incluse nelle risposte del modello. Le stringhe vengono associate esattamente, incluse le lettere maiuscole. Il valore predefinito è un array vuoto.
  • GROUND_WITH_GOOGLE_SEARCH: un valore BOOL che determina se il modello Vertex AI utilizza la basamento con la Ricerca Google per generare le risposte. La fondatezza consente al modello di utilizzare informazioni aggiuntive di internet durante la generazione di una risposta, in modo da rendere le risposte del modello più specifiche e oggettive. Quando sia flatten_json_output sia questo campo sono impostati su True, nei risultati viene inclusa un'altra colonna ml_generate_text_grounding_result che fornisce le origini utilizzate dal modello per raccogliere informazioni aggiuntive. Il valore predefinito è FALSE.
  • SAFETY_SETTINGS: un valore ARRAY<STRUCT<STRING AS category, STRING AS threshold>> che configura le soglie di sicurezza dei contenuti per filtrare le risposte. Il primo elemento della struttura specifica una categoria di danno e il secondo elemento della struttura specifica una soglia di blocco corrispondente. Il modello filtra i contenuti che violano queste impostazioni. Puoi specificare ogni categoria una sola volta. Ad esempio, non puoi specificare sia STRUCT('HARM_CATEGORY_DANGEROUS_CONTENT' AS category, 'BLOCK_MEDIUM_AND_ABOVE' AS threshold) che STRUCT('HARM_CATEGORY_DANGEROUS_CONTENT' AS category, 'BLOCK_ONLY_HIGH' AS threshold). Se non è presente un'impostazione di sicurezza per una determinata categoria, viene utilizzata l'impostazione di sicurezza BLOCK_MEDIUM_AND_ABOVE.

    Le categorie supportate sono le seguenti:

    • HARM_CATEGORY_HATE_SPEECH
    • HARM_CATEGORY_DANGEROUS_CONTENT
    • HARM_CATEGORY_HARASSMENT
    • HARM_CATEGORY_SEXUALLY_EXPLICIT

    Le soglie supportate sono le seguenti:

    • BLOCK_NONE (Accesso limitato)
    • BLOCK_LOW_AND_ABOVE
    • BLOCK_MEDIUM_AND_ABOVE (valore predefinito)
    • BLOCK_ONLY_HIGH
    • HARM_BLOCK_THRESHOLD_UNSPECIFIED

    Per ulteriori informazioni, consulta la definizione di categoria di sicurezza e soglia di blocco.

Esempio 1

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Richiede un riepilogo del testo nella colonna body della tabella articles.
  • Restituisce il testo generato e gli attributi di sicurezza in colonne separate.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    (
      SELECT CONCAT('Summarize this text', body) AS prompt
      FROM mydataset.articles
    ),
    STRUCT(TRUE AS flatten_json_output));

Esempio 2

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Utilizza una query per creare i dati del prompt concatenando stringhe che forniscono prefisso del prompt con le colonne della tabella.
  • Restituisce una risposta breve.
  • Non restituisce il testo generato e gli attributi di sicurezza in colonne separate.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    (
      SELECT CONCAT(question, 'Text:', description, 'Category') AS prompt
      FROM mydataset.input_table
    ),
    STRUCT(
      100 AS max_output_tokens, FALSE AS flatten_json_output));

Esempio 3

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Richiede un riepilogo del testo nella colonna body della tabella articles.
  • Appiattisce la risposta JSON in colonne separate.
  • Recupera e restituisce dati web pubblici per la definizione delle risposte.
  • Filtra le risposte non sicure utilizzando due impostazioni di sicurezza.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    (
      SELECT CONCAT('Summarize this text', body) AS prompt
      FROM mydataset.articles
    ),
    STRUCT(
      TRUE AS flatten_json_output, TRUE AS ground_with_google_search,
      [STRUCT('HARM_CATEGORY_HATE_SPEECH' AS category,
        'BLOCK_LOW_AND_ABOVE' AS threshold),
      STRUCT('HARM_CATEGORY_DANGEROUS_CONTENT' AS category,
        'BLOCK_MEDIUM_AND_ABOVE' AS threshold)] AS safety_settings));

Claude

SELECT *
FROM ML.GENERATE_TEXT(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  (PROMPT_QUERY),
  STRUCT(TOKENS AS max_output_tokens, TOP_K AS top_k,
  TOP_P AS top_p, FLATTEN_JSON AS flatten_json_output)
);
Sostituisci quanto segue:
  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che contiene il modello.
  • MODEL_NAME: il nome del modello.
  • PROMPT_QUERY: una query che fornisce i dati del prompt.
  • TOKENS: un valore INT64 che imposta il numero massimo di token che possono essere generati nella risposta. Questo valore deve essere compreso nell'intervallo [1,4096]. Specifica un valore più basso per risposte più brevi e un valore più alto per risposte più lunghe. Il valore predefinito è 128.
  • TOP_K: un valore INT64 nell'intervallo [1,40] che determina il pool iniziale di token preso in considerazione dal modello per la selezione. Specifica un valore più basso per risposte meno random e un valore più alto per risposte più random. Se non specifichi un valore, il modello ne determina uno appropriato.
  • TOP_P: un valore FLOAT64 nell'intervallo [0.0,1.0] consente di determinare la probabilità dei token selezionati. Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali. Se non specifichi un valore, il modello ne determina uno appropriato.
  • FLATTEN_JSON: un valore BOOL che determina se restituire il testo generato e gli attributi di sicurezza in colonne separate. Il valore predefinito è FALSE.

Esempio 1

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Richiede un riepilogo del testo nella colonna body della tabella articles.
  • Restituisce il testo generato e gli attributi di sicurezza in colonne separate.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    (
      SELECT CONCAT('Summarize this text', body) AS prompt
      FROM mydataset.articles
    ),
    STRUCT(TRUE AS flatten_json_output));

Esempio 2

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Utilizza una query per creare i dati del prompt concatenando stringhe che forniscono prefisso del prompt con le colonne della tabella.
  • Restituisce una risposta breve.
  • Non restituisce il testo generato e gli attributi di sicurezza in colonne separate.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    (
      SELECT CONCAT(question, 'Text:', description, 'Category') AS prompt
      FROM mydataset.input_table
    ),
    STRUCT(
      100 AS max_output_tokens, FALSE AS flatten_json_output));

text-bison

SELECT *
FROM ML.GENERATE_TEXT(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  (PROMPT_QUERY),
  STRUCT(TOKENS AS max_output_tokens, TEMPERATURE AS temperature,
  TOP_K AS top_k, TOP_P AS top_p, FLATTEN_JSON AS flatten_json_output,
  STOP_SEQUENCES AS stop_sequences)
);
Sostituisci quanto segue:
  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che contiene il modello.
  • MODEL_NAME: il nome del modello.
  • PROMPT_QUERY: una query che fornisce i dati del prompt.
  • TOKENS: un valore INT64 che imposta il numero massimo di token che possono essere generati nella risposta. Questo valore deve essere compreso nell'intervallo [1,1024]. Specifica un valore più basso per risposte più brevi e un valore più alto per risposte più lunghe. Il valore predefinito è 128.
  • TEMPERATURE: un valore FLOAT64 nell'intervallo [0.0,1.0] che controlla il grado di casualità nella selezione dei token. Il valore predefinito è 0.

    I valori più bassi per temperature sono ideali per prompt che richiedono una risposta più deterministica e meno aperta o creativa, mentre i valori più alti per temperature possono portare a risultati più diversi o creativi. Un valore 0 per temperature è deterministico, il che significa che viene sempre selezionata la risposta con la probabilità più alta.

  • TOP_K: un valore INT64 nell'intervallo [1,40] che determina il pool iniziale di token preso in considerazione dal modello per la selezione. Specifica un valore più basso per risposte meno random e un valore più alto per risposte più random. Il valore predefinito è 40.
  • TOP_P: un valore FLOAT64 nell'intervallo [0.0,1.0] consente di determinare la probabilità dei token selezionati. Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali. Il valore predefinito è 0.95.
  • FLATTEN_JSON: un valore BOOL che determina se restituire il testo generato e gli attributi di sicurezza in colonne separate. Il valore predefinito è FALSE.
  • STOP_SEQUENCES: un valore ARRAY<STRING> che rimuove le stringhe specificate se sono incluse nelle risposte del modello. Le stringhe vengono associate esattamente, incluse le lettere maiuscole. Il valore predefinito è un array vuoto.

Esempio 1

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Richiede un riepilogo del testo nella colonna body della tabella articles.
  • Restituisce il testo generato e gli attributi di sicurezza in colonne separate.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    (
      SELECT CONCAT('Summarize this text', body) AS prompt
      FROM mydataset.articles
    ),
    STRUCT(TRUE AS flatten_json_output));

Esempio 2

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Utilizza una query per creare i dati del prompt concatenando stringhe che forniscono prefisso del prompt con le colonne della tabella.
  • Restituisce una risposta breve.
  • Non restituisce il testo generato e gli attributi di sicurezza in colonne separate.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    (
      SELECT CONCAT(question, 'Text:', description, 'Category') AS prompt
      FROM mydataset.input_table
    ),
    STRUCT(
      100 AS max_output_tokens, FALSE AS flatten_json_output));

text-bison32

SELECT *
FROM ML.GENERATE_TEXT(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  (PROMPT_QUERY),
  STRUCT(TOKENS AS max_output_tokens, TEMPERATURE AS temperature,
  TOP_K AS top_k, TOP_P AS top_p, FLATTEN_JSON AS flatten_json_output,
  STOP_SEQUENCES AS stop_sequences)
);
Sostituisci quanto segue:
  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che contiene il modello.
  • MODEL_NAME: il nome del modello.
  • PROMPT_QUERY: una query che fornisce i dati del prompt.
  • TOKENS: un valore INT64 che imposta il numero massimo di token che possono essere generati nella risposta. Questo valore deve essere compreso nell'intervallo [1,8192]. Specifica un valore più basso per risposte più brevi e un valore più alto per risposte più lunghe. Il valore predefinito è 128.
  • TEMPERATURE: un valore FLOAT64 nell'intervallo [0.0,1.0] che controlla il grado di casualità nella selezione dei token. Il valore predefinito è 0.

    I valori più bassi per temperature sono ideali per prompt che richiedono una risposta più deterministica e meno aperta o creativa, mentre i valori più alti per temperature possono portare a risultati più diversi o creativi. Un valore 0 per temperature è deterministico, il che significa che viene sempre selezionata la risposta con la probabilità più alta.

  • TOP_K: un valore INT64 nell'intervallo [1,40] che determina il pool iniziale di token preso in considerazione dal modello per la selezione. Specifica un valore più basso per risposte meno random e un valore più alto per risposte più random. Il valore predefinito è 40.
  • TOP_P: un valore FLOAT64 nell'intervallo [0.0,1.0] consente di determinare la probabilità dei token selezionati. Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali. Il valore predefinito è 0.95.
  • FLATTEN_JSON: un valore BOOL che determina se restituire il testo generato e gli attributi di sicurezza in colonne separate. Il valore predefinito è FALSE.
  • STOP_SEQUENCES: un valore ARRAY<STRING> che rimuove le stringhe specificate se sono incluse nelle risposte del modello. Le stringhe vengono associate esattamente, incluse le lettere maiuscole. Il valore predefinito è un array vuoto.

Esempio 1

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Richiede un riepilogo del testo nella colonna body della tabella articles.
  • Restituisce il testo generato e gli attributi di sicurezza in colonne separate.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    (
      SELECT CONCAT('Summarize this text', body) AS prompt
      FROM mydataset.articles
    ),
    STRUCT(TRUE AS flatten_json_output));

Esempio 2

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Utilizza una query per creare i dati del prompt concatenando stringhe che forniscono prefisso del prompt con le colonne della tabella.
  • Restituisce una risposta breve.
  • Non restituisce il testo generato e gli attributi di sicurezza in colonne separate.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    (
      SELECT CONCAT(question, 'Text:', description, 'Category') AS prompt
      FROM mydataset.input_table
    ),
    STRUCT(
      100 AS max_output_tokens, FALSE AS flatten_json_output));

text-unicorn

SELECT *
FROM ML.GENERATE_TEXT(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  (PROMPT_QUERY),
  STRUCT(TOKENS AS max_output_tokens, TEMPERATURE AS temperature,
  TOP_K AS top_k, TOP_P AS top_p, FLATTEN_JSON AS flatten_json_output,
  STOP_SEQUENCES AS stop_sequences)
);
Sostituisci quanto segue:
  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che contiene il modello.
  • MODEL_NAME: il nome del modello.
  • PROMPT_QUERY: una query che fornisce i dati del prompt.
  • TOKENS: un valore INT64 che imposta il numero massimo di token che possono essere generati nella risposta. Questo valore deve essere compreso nell'intervallo [1,1024]. Specifica un valore più basso per risposte più brevi e un valore più alto per risposte più lunghe. Il valore predefinito è 128.
  • TEMPERATURE: un valore FLOAT64 nell'intervallo [0.0,1.0] che controlla il grado di casualità nella selezione dei token. Il valore predefinito è 0.

    I valori più bassi per temperature sono ideali per prompt che richiedono una risposta più deterministica e meno aperta o creativa, mentre i valori più alti per temperature possono portare a risultati più diversi o creativi. Un valore 0 per temperature è deterministico, il che significa che viene sempre selezionata la risposta con la probabilità più alta.

  • TOP_K: un valore INT64 nell'intervallo [1,40] che determina il pool iniziale di token preso in considerazione dal modello per la selezione. Specifica un valore più basso per risposte meno random e un valore più alto per risposte più random. Il valore predefinito è 40.
  • TOP_P: un valore FLOAT64 nell'intervallo [0.0,1.0] consente di determinare la probabilità dei token selezionati. Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali. Il valore predefinito è 0.95.
  • FLATTEN_JSON: un valore BOOL che determina se restituire il testo generato e gli attributi di sicurezza in colonne separate. Il valore predefinito è FALSE.
  • STOP_SEQUENCES: un valore ARRAY<STRING> che rimuove le stringhe specificate se sono incluse nelle risposte del modello. Le stringhe vengono associate esattamente, incluse le lettere maiuscole. Il valore predefinito è un array vuoto.

Esempio 1

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Richiede un riepilogo del testo nella colonna body della tabella articles.
  • Restituisce il testo generato e gli attributi di sicurezza in colonne separate.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    (
      SELECT CONCAT('Summarize this text', body) AS prompt
      FROM mydataset.articles
    ),
    STRUCT(TRUE AS flatten_json_output));

Esempio 2

L'esempio seguente mostra una richiesta con le seguenti caratteristiche:

  • Utilizza una query per creare i dati del prompt concatenando stringhe che forniscono prefisso del prompt con le colonne della tabella.
  • Restituisce una risposta breve.
  • Non restituisce il testo generato e gli attributi di sicurezza in colonne separate.
SELECT *
FROM
  ML.GENERATE_TEXT(
    MODEL `mydataset.text_model`,
    (
      SELECT CONCAT(question, 'Text:', description, 'Category') AS prompt
      FROM mydataset.input_table
    ),
    STRUCT(
      100 AS max_output_tokens, FALSE AS flatten_json_output));

Genera testo dai dati della tabella degli oggetti

Genera il testo utilizzando la funzione ML.GENERATE_TEXT con un modello remoto, utilizzando una tabella di oggetti per fornire i contenuti da analizzare e fornendo i dati del prompt nel parametro prompt:

gemini-1.5-flash

SELECT *
FROM ML.GENERATE_TEXT(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  TABLE PROJECT_ID.DATASET_ID.TABLE_NAME,
  STRUCT(PROMPT AS prompt, TOKENS AS max_output_tokens,
  TEMPERATURE AS temperature, TOP_P AS top_p,
  FLATTEN_JSON AS flatten_json_output,
  STOP_SEQUENCES AS stop_sequences,
  SAFETY_SETTINGS AS safety_settings)
);

Sostituisci quanto segue:

  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che contiene il modello.
  • MODEL_NAME: il nome del modello.
  • TABLE_NAME: il nome della tabella di oggetti che contiene i contenuti da analizzare. Per ulteriori informazioni sui tipi di contenuti che puoi analizzare, consulta Input.

    Il bucket Cloud Storage utilizzato dalla tabella degli oggetti deve trovarsi nello stesso progetto in cui hai creato il modello e in cui chiami la funzione ML.GENERATE_TEXT. Se vuoi chiamare la funzione ML.GENERATE_TEXT in un progetto diverso da quello che contiene il bucket Cloud Storage utilizzato dalla tabella di oggetti, devi concedere il ruolo Amministratore archiviazione a livello di bucket all'account di servizio service-A@gcp-sa-aiplatform.iam.gserviceaccount.com.

  • PROMPT: il prompt da utilizzare per analizzare i contenuti.
  • TOKENS: un valore INT64 che imposta il numero massimo di token che possono essere generati nella risposta. Questo valore deve essere compreso nell'intervallo [1,8192]. Specifica un valore più basso per risposte più brevi e un valore più alto per risposte più lunghe. Il valore predefinito è 128.
  • TEMPERATURE: un valore FLOAT64 nell'intervallo [0.0,2.0] che controlla il grado di casualità nella selezione dei token. Il valore predefinito è 0.

    I valori più bassi per temperature sono ideali per prompt che richiedono risposte più deterministiche e meno aperte o creative, mentre i valori più alti per temperature possono portare a risultati più diversificati o creativi. Un valore 0 per temperature è deterministico, il che significa che viene sempre selezionata la risposta con la probabilità più alta.

  • TOP_P: un valore FLOAT64 nell'intervallo [0.0,1.0] consente di determinare la probabilità dei token selezionati. Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali. Il valore predefinito è 0.95.
  • FLATTEN_JSON: un valore BOOL che determina se restituire il testo generato e gli attributi di sicurezza in colonne separate. Il valore predefinito è FALSE.
  • STOP_SEQUENCES: un valore ARRAY<STRING> che rimuove le stringhe specificate se sono incluse nelle risposte del modello. Le stringhe vengono associate esattamente, incluse le lettere maiuscole. Il valore predefinito è un array vuoto.
  • SAFETY_SETTINGS: un valore ARRAY<STRUCT<STRING AS category, STRING AS threshold>> che configura le soglie di sicurezza dei contenuti per filtrare le risposte. Il primo elemento della struttura specifica una categoria di danno e il secondo elemento della struttura specifica una soglia di blocco corrispondente. Il modello filtra i contenuti che violano queste impostazioni. Puoi specificare ogni categoria una sola volta. Ad esempio, non puoi specificare sia STRUCT('HARM_CATEGORY_DANGEROUS_CONTENT' AS category, 'BLOCK_MEDIUM_AND_ABOVE' AS threshold) che STRUCT('HARM_CATEGORY_DANGEROUS_CONTENT' AS category, 'BLOCK_ONLY_HIGH' AS threshold). Se non è presente un'impostazione di sicurezza per una determinata categoria, viene utilizzata l'impostazione di sicurezza BLOCK_MEDIUM_AND_ABOVE.

    Le categorie supportate sono le seguenti:

    • HARM_CATEGORY_HATE_SPEECH
    • HARM_CATEGORY_DANGEROUS_CONTENT
    • HARM_CATEGORY_HARASSMENT
    • HARM_CATEGORY_SEXUALLY_EXPLICIT

    Le soglie supportate sono le seguenti:

    • BLOCK_NONE (Accesso limitato)
    • BLOCK_LOW_AND_ABOVE
    • BLOCK_MEDIUM_AND_ABOVE (valore predefinito)
    • BLOCK_ONLY_HIGH
    • HARM_BLOCK_THRESHOLD_UNSPECIFIED

    Per ulteriori informazioni, consulta la definizione di categoria di sicurezza e soglia di blocco.

Esempi

Questo esempio analizza i contenuti video di una tabella di oggetti denominata videos e descrive i contenuti di ciascun video:

SELECT * FROM
  ML.GENERATE_TEXT(
    MODEL
      `mydataset.video_model`,
        TABLE `mydataset.videos`,
          STRUCT('What is happening in this video?' AS PROMPT,
          TRUE AS FLATTEN_JSON_OUTPUT));

Questo esempio traduce e trascrivi i contenuti audio da una tabella di oggetti denominata feedback:

SELECT * FROM
  ML.GENERATE_TEXT(
    MODEL
      `mydataset.audio_model`,
        TABLE `mydataset.feedback`,
          STRUCT('What is the content of this audio clip, translated into Spanish?' AS PROMPT,
          TRUE AS FLATTEN_JSON_OUTPUT));

Questo esempio classifica i contenuti PDF di una tabella di oggetti denominata invoices:

SELECT * FROM
  ML.GENERATE_TEXT(
    MODEL
      `mydataset.classify_model`,
        TABLE `mydataset.invoices`,
          STRUCT('Classify this document based on the invoice total, using the following categories: 0 to 100, 101 to 200, greater than 200' AS PROMPT,
          TRUE AS FLATTEN_JSON_OUTPUT));

gemini-1.5-pro

SELECT *
FROM ML.GENERATE_TEXT(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  TABLE PROJECT_ID.DATASET_ID.TABLE_NAME,
  STRUCT(PROMPT AS prompt, TOKENS AS max_output_tokens,
  TEMPERATURE AS temperature, TOP_P AS top_p,
  FLATTEN_JSON AS flatten_json_output,
  STOP_SEQUENCES AS stop_sequences,
  SAFETY_SETTINGS AS safety_settings)
);

Sostituisci quanto segue:

  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che contiene il modello.
  • MODEL_NAME: il nome del modello.
  • TABLE_NAME: il nome della tabella di oggetti che contiene i contenuti da analizzare. Per ulteriori informazioni sui tipi di contenuti che puoi analizzare, consulta Input.

    Il bucket Cloud Storage utilizzato dalla tabella degli oggetti deve trovarsi nello stesso progetto in cui hai creato il modello e in cui chiami la funzione ML.GENERATE_TEXT. Se vuoi chiamare la funzione ML.GENERATE_TEXT in un progetto diverso da quello che contiene il bucket Cloud Storage utilizzato dalla tabella di oggetti, devi concedere il ruolo Amministratore archiviazione a livello di bucket all'account di servizio service-A@gcp-sa-aiplatform.iam.gserviceaccount.com.

  • PROMPT: il prompt da utilizzare per analizzare i contenuti.
  • TOKENS: un valore INT64 che imposta il numero massimo di token che possono essere generati nella risposta. Questo valore deve essere compreso nell'intervallo [1,8192]. Specifica un valore più basso per risposte più brevi e un valore più alto per risposte più lunghe. Il valore predefinito è 128.
  • TEMPERATURE: un valore FLOAT64 nell'intervallo [0.0,2.0] che controlla il grado di casualità nella selezione dei token. Il valore predefinito è 0.

    I valori più bassi per temperature sono ideali per prompt che richiedono risposte più deterministiche e meno aperte o creative, mentre i valori più alti per temperature possono portare a risultati più diversificati o creativi. Un valore 0 per temperature è deterministico, il che significa che viene sempre selezionata la risposta con la probabilità più alta.

  • TOP_P: un valore FLOAT64 nell'intervallo [0.0,1.0] consente di determinare la probabilità dei token selezionati. Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali. Il valore predefinito è 0.95.
  • FLATTEN_JSON: un valore BOOL che determina se restituire il testo generato e gli attributi di sicurezza in colonne separate. Il valore predefinito è FALSE.
  • STOP_SEQUENCES: un valore ARRAY<STRING> che rimuove le stringhe specificate se sono incluse nelle risposte del modello. Le stringhe vengono associate esattamente, incluse le lettere maiuscole. Il valore predefinito è un array vuoto.
  • SAFETY_SETTINGS: un valore ARRAY<STRUCT<STRING AS category, STRING AS threshold>> che configura le soglie di sicurezza dei contenuti per filtrare le risposte. Il primo elemento della struttura specifica una categoria di danno e il secondo elemento della struttura specifica una soglia di blocco corrispondente. Il modello filtra i contenuti che violano queste impostazioni. Puoi specificare ogni categoria una sola volta. Ad esempio, non puoi specificare sia STRUCT('HARM_CATEGORY_DANGEROUS_CONTENT' AS category, 'BLOCK_MEDIUM_AND_ABOVE' AS threshold) che STRUCT('HARM_CATEGORY_DANGEROUS_CONTENT' AS category, 'BLOCK_ONLY_HIGH' AS threshold). Se non è presente un'impostazione di sicurezza per una determinata categoria, viene utilizzata l'impostazione di sicurezza BLOCK_MEDIUM_AND_ABOVE.

    Le categorie supportate sono le seguenti:

    • HARM_CATEGORY_HATE_SPEECH
    • HARM_CATEGORY_DANGEROUS_CONTENT
    • HARM_CATEGORY_HARASSMENT
    • HARM_CATEGORY_SEXUALLY_EXPLICIT

    Le soglie supportate sono le seguenti:

    • BLOCK_NONE (Accesso limitato)
    • BLOCK_LOW_AND_ABOVE
    • BLOCK_MEDIUM_AND_ABOVE (valore predefinito)
    • BLOCK_ONLY_HIGH
    • HARM_BLOCK_THRESHOLD_UNSPECIFIED

    Per ulteriori informazioni, consulta la definizione di categoria di sicurezza e soglia di blocco.

Esempi

Questo esempio analizza i contenuti video di una tabella di oggetti denominata videos e descrive i contenuti di ciascun video:

SELECT * FROM
  ML.GENERATE_TEXT(
    MODEL
      `mydataset.video_model`,
        TABLE `mydataset.videos`,
          STRUCT('What is happening in this video?' AS PROMPT,
          TRUE AS FLATTEN_JSON_OUTPUT));

Questo esempio traduce e trascrivi i contenuti audio da una tabella di oggetti denominata feedback:

SELECT * FROM
  ML.GENERATE_TEXT(
    MODEL
      `mydataset.audio_model`,
        TABLE `mydataset.feedback`,
          STRUCT('What is the content of this audio clip, translated into Spanish?' AS PROMPT,
          TRUE AS FLATTEN_JSON_OUTPUT));

Questo esempio classifica i contenuti PDF di una tabella di oggetti denominata invoices:

SELECT * FROM
  ML.GENERATE_TEXT(
    MODEL
      `mydataset.classify_model`,
        TABLE `mydataset.invoices`,
          STRUCT('Classify this document based on the invoice total, using the following categories: 0 to 100, 101 to 200, greater than 200' AS PROMPT,
          TRUE AS FLATTEN_JSON_OUTPUT));

gemini-pro-vision

SELECT *
FROM ML.GENERATE_TEXT(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  TABLE PROJECT_ID.DATASET_ID.TABLE_NAME,
  STRUCT(PROMPT AS prompt, TOKENS AS max_output_tokens,
  TEMPERATURE AS temperature, TOP_K AS top_k,
  TOP_P AS top_p, FLATTEN_JSON AS flatten_json_output,
  STOP_SEQUENCES AS stop_sequences,
  SAFETY_SETTINGS AS safety_settings)
);

Sostituisci quanto segue:

  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che contiene il modello.
  • MODEL_NAME: il nome del modello.
  • TABLE_NAME: il nome della tabella di oggetti che contiene i contenuti da analizzare. Per ulteriori informazioni sui tipi di contenuti che puoi analizzare, consulta Input.

    Il bucket Cloud Storage utilizzato dalla tabella degli oggetti deve trovarsi nello stesso progetto in cui hai creato il modello e in cui chiami la funzione ML.GENERATE_TEXT. Se vuoi chiamare la funzione ML.GENERATE_TEXT in un progetto diverso da quello che contiene il bucket Cloud Storage utilizzato dalla tabella di oggetti, devi concedere il ruolo Amministratore archiviazione a livello di bucket all'account di servizio service-A@gcp-sa-aiplatform.iam.gserviceaccount.com.

  • PROMPT: il prompt da utilizzare per analizzare i contenuti.
  • TOKENS: un valore INT64 che imposta il numero massimo di token che possono essere generati nella risposta. Questo valore deve essere compreso nell'intervallo [1,2048]. Specifica un valore più basso per risposte più brevi e un valore più alto per risposte più lunghe. Il valore predefinito è 2048.
  • TEMPERATURE: un valore FLOAT64 nell'intervallo [0.0,1.0] che controlla il grado di casualità nella selezione dei token. Il valore predefinito è 0.4.

    I valori più bassi per temperature sono ideali per prompt che richiedono risposte più deterministiche e meno aperte o creative, mentre i valori più alti per temperature possono portare a risultati più diversificati o creativi. Un valore 0 per temperature è deterministico, il che significa che viene sempre selezionata la risposta con la probabilità più alta.

  • TOP_K: un valore INT64 nell'intervallo [1,40] che determina il pool iniziale di token preso in considerazione dal modello per la selezione. Specifica un valore più basso per risposte meno random e un valore più alto per risposte più random. Il valore predefinito è 32.
  • TOP_P: un valore FLOAT64 nell'intervallo [0.0,1.0] consente di determinare la probabilità dei token selezionati. Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali. Il valore predefinito è 0.95.
  • FLATTEN_JSON: un valore BOOL che determina se restituire il testo generato e gli attributi di sicurezza in colonne separate. Il valore predefinito è FALSE.
  • STOP_SEQUENCES: un valore ARRAY<STRING> che rimuove le stringhe specificate se sono incluse nelle risposte del modello. Le stringhe vengono associate esattamente, incluse le lettere maiuscole. Il valore predefinito è un array vuoto.
  • SAFETY_SETTINGS: un valore ARRAY<STRUCT<STRING AS category, STRING AS threshold>> che configura le soglie di sicurezza dei contenuti per filtrare le risposte. Il primo elemento della struttura specifica una categoria di danno e il secondo elemento della struttura specifica una soglia di blocco corrispondente. Il modello filtra i contenuti che violano queste impostazioni. Puoi specificare ogni categoria una sola volta. Ad esempio, non puoi specificare sia STRUCT('HARM_CATEGORY_DANGEROUS_CONTENT' AS category, 'BLOCK_MEDIUM_AND_ABOVE' AS threshold) che STRUCT('HARM_CATEGORY_DANGEROUS_CONTENT' AS category, 'BLOCK_ONLY_HIGH' AS threshold). Se non è presente un'impostazione di sicurezza per una determinata categoria, viene utilizzata l'impostazione di sicurezza BLOCK_MEDIUM_AND_ABOVE.

    Le categorie supportate sono le seguenti:

    • HARM_CATEGORY_HATE_SPEECH
    • HARM_CATEGORY_DANGEROUS_CONTENT
    • HARM_CATEGORY_HARASSMENT
    • HARM_CATEGORY_SEXUALLY_EXPLICIT

    Le soglie supportate sono le seguenti:

    • BLOCK_NONE (Accesso limitato)
    • BLOCK_LOW_AND_ABOVE
    • BLOCK_MEDIUM_AND_ABOVE (valore predefinito)
    • BLOCK_ONLY_HIGH
    • HARM_BLOCK_THRESHOLD_UNSPECIFIED

    Per ulteriori informazioni, consulta la definizione di categoria di sicurezza e soglia di blocco.

Esempi

Questo esempio analizza i contenuti video di una tabella di oggetti denominata videos e descrive i contenuti di ciascun video:

SELECT * FROM
  ML.GENERATE_TEXT(
    MODEL
      `mydataset.video_model`,
        TABLE `mydataset.videos`,
          STRUCT('What is happening in this video?' AS PROMPT,
          TRUE AS FLATTEN_JSON_OUTPUT));