Tutorial ini mengajarkan cara menggunakan model deret waktu multi-variasi untuk memperkirakan nilai mendatang untuk kolom tertentu, berdasarkan nilai historis dari beberapa fitur input.
Tutorial ini memperkirakan satu deret waktu. Nilai perkiraan dihitung sekali untuk setiap titik waktu dalam data input.
Tutorial ini menggunakan data dari
set data publik bigquery-public-data.epa_historical_air_quality
. Set data
ini berisi informasi tentang materi partikulat harian (PM2.5),
suhu, dan informasi kecepatan angin yang dikumpulkan dari beberapa kota di AS.
Tujuan
Tutorial ini memandu Anda menyelesaikan tugas-tugas berikut:
- Membuat model deret waktu untuk memperkirakan nilai PM2.5 menggunakan
pernyataan
CREATE MODEL
. - Mengevaluasi informasi autoregressive integrated moving average (ARIMA)
dalam model menggunakan
fungsi
ML.ARIMA_EVALUATE
. - Memeriksa koefisien model menggunakan
fungsi
ML.ARIMA_COEFFICIENTS
. - Mengambil nilai PM2.5 yang diprediksi dari model menggunakan
fungsi
ML.FORECAST
. - Mengevaluasi akurasi model menggunakan
fungsi
ML.EVALUATE
. - Mengambil komponen deret waktu, seperti tren musiman, tren, dan
atribusi fitur, dengan menggunakan
fungsi
ML.EXPLAIN_FORECAST
. Anda dapat memeriksa komponen deret waktu ini untuk menjelaskan nilai yang diprediksi.
Biaya
Tutorial ini menggunakan komponen Google Cloud yang dapat ditagih, termasuk:
- BigQuery
- BigQuery ML
Untuk informasi selengkapnya tentang biaya BigQuery, lihat halaman harga BigQuery.
Untuk informasi selengkapnya tentang biaya BigQuery ML, lihat harga BigQuery ML.
Sebelum memulai
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
- BigQuery secara otomatis diaktifkan dalam project baru.
Untuk mengaktifkan BigQuery dalam project yang sudah ada, buka
Enable the BigQuery API.
Izin yang Diperlukan
- Untuk membuat set data, Anda memerlukan izin
IAM
bigquery.datasets.create
. Untuk membuat resource koneksi, Anda memerlukan izin berikut:
bigquery.connections.create
bigquery.connections.get
Untuk membuat model, Anda memerlukan izin berikut:
bigquery.jobs.create
bigquery.models.create
bigquery.models.getData
bigquery.models.updateData
bigquery.connections.delegate
Untuk menjalankan inferensi, Anda memerlukan izin berikut:
bigquery.models.getData
bigquery.jobs.create
Untuk mengetahui informasi lebih lanjut tentang peran dan izin IAM di BigQuery, baca Pengantar IAM.
Membuat set data
Buat set data BigQuery untuk menyimpan model ML Anda:
Di konsol Google Cloud, buka halaman BigQuery.
Di panel Explorer, klik nama project Anda.
Klik
View actions > Create dataset.Di halaman Create dataset, lakukan hal berikut:
Untuk Dataset ID, masukkan
bqml_tutorial
.Untuk Location type, pilih Multi-region, lalu pilih US (multiple regions in United States).
Set data publik disimpan di
US
multi-region. Untuk mempermudah, simpan set data Anda di lokasi yang sama.Jangan ubah setelan default yang tersisa, lalu klik Create dataset.
Membuat tabel data input
Buat tabel data yang dapat Anda gunakan untuk melatih dan mengevaluasi model. Tabel ini menggabungkan kolom dari beberapa tabel dalam set data bigquery-public-data.epa_historical_air_quality
untuk memberikan data cuaca harian. Anda juga membuat kolom berikut untuk digunakan sebagai
variabel input untuk model:
date
: tanggal pengamatanpm25
nilai rata-rata PM2,5 untuk setiap hariwind_speed
: kecepatan angin rata-rata untuk setiap haritemperature
: suhu tertinggi untuk setiap hari
Dalam kueri GoogleSQL berikut, klausa FROM bigquery-public-data.epa_historical_air_quality.*_daily_summary
menunjukkan bahwa Anda membuat kueri tabel *_daily_summary
di set data epa_historical_air_quality
. Tabel ini adalah
tabel yang dipartisi.
Ikuti langkah-langkah berikut untuk membuat tabel data input:
Di Konsol Google Cloud, buka halaman BigQuery.
Di editor kueri, tempel kueri berikut dan klik Jalankan:
CREATE TABLE `bqml_tutorial.seattle_air_quality_daily` AS WITH pm25_daily AS ( SELECT avg(arithmetic_mean) AS pm25, date_local AS date FROM `bigquery-public-data.epa_historical_air_quality.pm25_nonfrm_daily_summary` WHERE city_name = 'Seattle' AND parameter_name = 'Acceptable PM2.5 AQI & Speciation Mass' GROUP BY date_local ), wind_speed_daily AS ( SELECT avg(arithmetic_mean) AS wind_speed, date_local AS date FROM `bigquery-public-data.epa_historical_air_quality.wind_daily_summary` WHERE city_name = 'Seattle' AND parameter_name = 'Wind Speed - Resultant' GROUP BY date_local ), temperature_daily AS ( SELECT avg(first_max_value) AS temperature, date_local AS date FROM `bigquery-public-data.epa_historical_air_quality.temperature_daily_summary` WHERE city_name = 'Seattle' AND parameter_name = 'Outdoor Temperature' GROUP BY date_local ) SELECT pm25_daily.date AS date, pm25, wind_speed, temperature FROM pm25_daily JOIN wind_speed_daily USING (date) JOIN temperature_daily USING (date);
Memvisualisasikan data input
Sebelum membuat model, Anda dapat memvisualisasikan data deret waktu input secara opsional untuk mendapatkan gambaran distribusi. Anda dapat melakukannya menggunakan Looker Studio.
Ikuti langkah-langkah berikut untuk memvisualisasikan data deret waktu:
Di Konsol Google Cloud, buka halaman BigQuery.
Di editor kueri, tempel kueri berikut dan klik Jalankan:
SELECT * FROM `bqml_tutorial.seattle_air_quality_daily`;
Setelah kueri selesai, klik Explore data > Explore with Looker Studio. Looker Studio akan terbuka di tab baru. Selesaikan langkah-langkah berikut di tab baru.
Di Looker Studio, klik Sisipkan > Diagram deret waktu.
Di panel Chart, pilih tab Setup.
Di bagian Metric, tambahkan kolom pm25, temperature, dan wind_speed, lalu hapus metrik default Record Count. Diagram yang dihasilkan akan terlihat mirip dengan berikut ini:
Dengan melihat diagram, Anda dapat melihat bahwa deret waktu input memiliki pola musiman mingguan.
Membuat model deret waktu
Buat model deret waktu untuk memperkirakan nilai materi partikulat, seperti yang diwakili
oleh kolom pm25
, menggunakan nilai kolom pm25
, wind_speed
, dan temperature
sebagai variabel input. Latih model pada data kualitas udara dari
tabel bqml_tutorial.seattle_air_quality_daily
, dengan memilih data yang dikumpulkan
antara 1 Januari 2012 dan 31 Desember 2020.
Dalam kueri berikut, klausa OPTIONS(model_type='ARIMA_PLUS_XREG',
time_series_timestamp_col='date', ...)
menunjukkan bahwa Anda membuat
ARIMA dengan model regresor eksternal. Opsi auto_arima
dalam pernyataan CREATE MODEL
secara default ditetapkan ke TRUE
, sehingga algoritma auto.ARIMA
akan otomatis menyesuaikan hyperparameter dalam model. Algoritma ini
cocok dengan beberapa model kandidat dan memilih model terbaik, yaitu model
dengan
kriteria informasi Akaike (AIC) terendah.
Opsi data_frequency
dari pernyataan CREATE MODEL
secara default ditetapkan ke AUTO_FREQUENCY
, sehingga proses pelatihan akan otomatis menyimpulkan frekuensi data dari deret waktu input.
Ikuti langkah-langkah berikut untuk membuat model:
Di Konsol Google Cloud, buka halaman BigQuery.
Di editor kueri, tempel kueri berikut dan klik Jalankan:
CREATE OR REPLACE MODEL `bqml_tutorial.seattle_pm25_xreg_model` OPTIONS ( MODEL_TYPE = 'ARIMA_PLUS_XREG', time_series_timestamp_col = 'date', # Identifies the column that contains time points time_series_data_col = 'pm25') # Identifies the column to forecast AS SELECT date, # The column that contains time points pm25, # The column to forecast temperature, # Temperature input to use in forecasting wind_speed # Wind speed input to use in forecasting FROM `bqml_tutorial.seattle_air_quality_daily` WHERE date BETWEEN DATE('2012-01-01') AND DATE('2020-12-31');
Kueri memerlukan waktu sekitar 20 detik untuk diselesaikan, setelah itu model
seattle_pm25_xreg_model
akan muncul di panel Explorer. Karena kueri tersebut menggunakan pernyataanCREATE MODEL
untuk membuat model, Anda tidak akan melihat hasil kueri.
Mengevaluasi model kandidat
Evaluasi model deret waktu menggunakan fungsi ML.ARIMA_EVALUATE
. Fungsi ML.ARIMA_EVALUATE
menampilkan metrik evaluasi
semua model kandidat yang dievaluasi selama proses penyesuaian
hyperparameter otomatis.
Ikuti langkah-langkah berikut untuk mengevaluasi model:
Di Konsol Google Cloud, buka halaman BigQuery.
Di editor kueri, tempel kueri berikut dan klik Jalankan:
SELECT * FROM ML.ARIMA_EVALUATE(MODEL `bqml_tutorial.seattle_pm25_xreg_model`);
Hasilnya akan terlihat seperti berikut:
Kolom output
non_seasonal_p
,non_seasonal_d
,non_seasonal_q
, danhas_drift
menentukan model ARIMA dalam pipeline pelatihan. Kolom outputlog_likelihood
,AIC
, danvariance
relevan dengan proses penyesuaian model ARIMA.Algoritma
auto.ARIMA
menggunakan pengujian KPSS untuk menentukan nilai terbaik untuknon_seasonal_d
, yang dalam hal ini adalah1
. Jikanon_seasonal_d
adalah1
, algoritmaauto.ARIMA
akan melatih 42 model ARIMA kandidat yang berbeda secara paralel. Dalam contoh ini, ke-42 model kandidat sudah valid, sehingga output berisi 42 baris, satu untuk setiap model ARIMA kandidat; jika beberapa model tidak valid, model tersebut akan dikecualikan dari output. Model kandidat ini ditampilkan dalam urutan menaik oleh AIC. Model di baris pertama memiliki AIC terendah, dan dianggap sebagai model terbaik. Model terbaik disimpan sebagai model akhir dan digunakan saat Anda memanggil fungsi sepertiML.FORECAST
pada model.Kolom
seasonal_periods
berisi informasi tentang pola musiman yang diidentifikasi dalam data deret waktu. Hal ini tidak ada hubungannya dengan pemodelan ARIMA karena memiliki nilai yang sama di semua baris output. Model ini melaporkan pola mingguan, yang sesuai dengan hasil yang Anda lihat jika memilih untuk memvisualisasikan data input.Kolom
has_holiday_effect
,has_spikes_and_dips
, danhas_step_changes
memberikan informasi tentang data deret waktu input, dan tidak terkait dengan pemodelan ARIMA. Kolom ini ditampilkan karena nilai opsidecompose_time_series
dalam pernyataanCREATE MODEL
adalahTRUE
. Kolom ini juga memiliki nilai yang sama di semua baris output.Kolom
error_message
menampilkan error yang terjadi selama proses penyesuaianauto.ARIMA
. Salah satu kemungkinan penyebab error adalah saat kolomnon_seasonal_p
,non_seasonal_d
,non_seasonal_q
, danhas_drift
yang dipilih tidak dapat menstabilkan deret waktu. Untuk mengambil pesan error dari semua model kandidat, tetapkan opsishow_all_candidate_models
keTRUE
saat Anda membuat model.Untuk informasi selengkapnya tentang kolom output, lihat fungsi
ML.ARIMA_EVALUATE
.
Memeriksa koefisien model
Periksa koefisien model deret waktu menggunakan
fungsi ML.ARIMA_COEFFICIENTS
.
Ikuti langkah-langkah berikut untuk mengambil koefisien model:
Di Konsol Google Cloud, buka halaman BigQuery.
Di editor kueri, tempel kueri berikut dan klik Jalankan:
SELECT * FROM ML.ARIMA_COEFFICIENTS(MODEL `bqml_tutorial.seattle_pm25_xreg_model`);
Hasilnya akan terlihat seperti berikut:
Kolom output
ar_coefficients
menunjukkan koefisien model bagian autoregresif (AR) dari model ARIMA. Demikian pula, kolom outputma_coefficients
menunjukkan koefisien model bagian rata-rata bergerak (MA) dari model ARIMA. Kedua kolom ini berisi nilai array, yang panjangnya sama dengannon_seasonal_p
dannon_seasonal_q
secara berurutan. Anda melihat dalam output fungsiML.ARIMA_EVALUATE
bahwa model terbaik memiliki nilainon_seasonal_p
sebesar0
dan nilainon_seasonal_q
sebesar5
. Oleh karena itu, dalam outputML.ARIMA_COEFFICIENTS
, nilaiar_coefficients
adalah array kosong dan nilaima_coefficients
adalah array 5 elemen. Nilaiintercept_or_drift
adalah istilah konstan dalam model ARIMA.Kolom output
processed_input
,weight
, dancategory_weights
menunjukkan bobot untuk setiap fitur dan intersepsi dalam model regresi linear. Jika fitur adalah fitur numerik, bobotnya ada di kolomweight
. Jika fitur adalah fitur kategoris, nilaicategory_weights
adalah array nilai struct, dengan setiap nilai struct berisi nama dan bobot kategori tertentu.Untuk informasi selengkapnya tentang kolom output, lihat fungsi
ML.ARIMA_COEFFICIENTS
.
Menggunakan model untuk memperkirakan data
Perkiraan nilai deret waktu mendatang menggunakan fungsi ML.FORECAST
.
Dalam kueri GoogleSQL berikut, klausa STRUCT(30 AS horizon, 0.8 AS confidence_level)
menunjukkan bahwa kueri memperkirakan 30 titik waktu di masa mendatang, dan menghasilkan interval prediksi dengan tingkat keyakinan 80%.
Ikuti langkah-langkah berikut untuk memperkirakan data dengan model:
Di Konsol Google Cloud, buka halaman BigQuery.
Di editor kueri, tempel kueri berikut dan klik Jalankan:
SELECT * FROM ML.FORECAST( MODEL `bqml_tutorial.seattle_pm25_xreg_model`, STRUCT(30 AS horizon, 0.8 AS confidence_level), ( SELECT date, temperature, wind_speed FROM `bqml_tutorial.seattle_air_quality_daily` WHERE date > DATE('2020-12-31') ));
Hasilnya akan terlihat seperti berikut:
Baris output diurutkan sesuai dengan kronologi berdasarkan nilai kolom
forecast_timestamp
. Dalam perkiraan deret waktu, interval prediksi, seperti yang diwakili oleh nilai kolomprediction_interval_lower_bound
danprediction_interval_upper_bound
, sama pentingnya dengan nilai kolomforecast_value
. Nilaiforecast_value
adalah titik tengah interval prediksi. Interval prediksi bergantung pada nilai kolomstandard_error
danconfidence_level
.Untuk informasi selengkapnya tentang kolom output, lihat fungsi
ML.FORECAST
.
Mengevaluasi akurasi perkiraan
Evaluasi akurasi perkiraan model menggunakan fungsi ML.EVALUATE
.
Dalam kueri GoogleSQL berikut, pernyataan SELECT
kedua menyediakan data dengan fitur mendatang, yang digunakan untuk memperkirakan nilai mendatang agar dibandingkan dengan data aktual.
Ikuti langkah-langkah berikut untuk mengevaluasi akurasi model:
Di Konsol Google Cloud, buka halaman BigQuery.
Di editor kueri, tempel kueri berikut dan klik Jalankan:
SELECT * FROM ML.EVALUATE( MODEL `bqml_tutorial.seattle_pm25_xreg_model`, ( SELECT date, pm25, temperature, wind_speed FROM `bqml_tutorial.seattle_air_quality_daily` WHERE date > DATE('2020-12-31') ), STRUCT( TRUE AS perform_aggregation, 30 AS horizon));
Hasilnya akan terlihat seperti berikut:
Untuk informasi selengkapnya tentang kolom output, lihat fungsi
ML.EVALUATE
.
Menjelaskan hasil perkiraan
Anda bisa mendapatkan metrik keterjelasan selain data perkiraan menggunakan
fungsi ML.EXPLAIN_FORECAST
. Fungsi ML.EXPLAIN_FORECAST
memperkirakan
nilai deret waktu mendatang dan juga menampilkan semua komponen terpisah dari
deret waktu.
Serupa dengan fungsi ML.FORECAST
, klausa STRUCT(30 AS horizon, 0.8 AS confidence_level)
yang digunakan dalam fungsi ML.EXPLAIN_FORECAST
menunjukkan bahwa kueri memperkirakan 30 titik waktu di masa mendatang dan menghasilkan interval prediksi dengan keyakinan 80%.
Ikuti langkah-langkah berikut untuk menjelaskan hasil model:
Di Konsol Google Cloud, buka halaman BigQuery.
Di editor kueri, tempel kueri berikut dan klik Jalankan:
SELECT * FROM ML.EXPLAIN_FORECAST( MODEL `bqml_tutorial.seattle_pm25_xreg_model`, STRUCT(30 AS horizon, 0.8 AS confidence_level), ( SELECT date, temperature, wind_speed FROM `bqml_tutorial.seattle_air_quality_daily` WHERE date > DATE('2020-12-31') ));
Hasilnya akan terlihat seperti berikut:
Baris output diurutkan secara kronologis berdasarkan nilai kolom
time_series_timestamp
.Untuk informasi selengkapnya tentang kolom output, lihat fungsi
ML.EXPLAIN_FORECAST
.
Pembersihan
Agar akun Google Cloud Anda tidak dikenai biaya untuk resource yang digunakan dalam tutorial ini, hapus project yang berisi resource tersebut, atau simpan project dan hapus resource satu per satu.
- Anda dapat menghapus project yang dibuat.
- Atau, Anda dapat menyimpan project dan menghapus set data.
Menghapus set data
Jika project Anda dihapus, semua set data dan semua tabel dalam project akan dihapus. Jika ingin menggunakan kembali project tersebut, Anda dapat menghapus set data yang dibuat dalam tutorial ini:
Jika perlu, buka halaman BigQuery di konsol Google Cloud.
Di navigasi, klik set data bqml_tutorial yang telah Anda buat.
Klik Delete dataset di sisi kanan jendela. Tindakan ini akan menghapus set data, tabel, dan semua data.
Pada dialog Hapus set data, konfirmasi perintah hapus dengan mengetikkan nama set data Anda (
bqml_tutorial
), lalu klik Hapus.
Menghapus project Anda
Untuk menghapus project:
- In the Google Cloud console, go to the Manage resources page.
- In the project list, select the project that you want to delete, and then click Delete.
- In the dialog, type the project ID, and then click Shut down to delete the project.
Langkah selanjutnya
- Pelajari cara membuat perkiraan deret waktu tunggal dengan model univariat
- Pelajari cara membuat perkiraan beberapa deret waktu dengan model univariat
- Pelajari cara menskalakan model univariat saat memperkirakan beberapa deret waktu di banyak baris.
- Pelajari cara membuat perkiraan hierarkis beberapa deret waktu dengan model univariat
- Untuk ringkasan BigQuery ML, lihat Pengantar AI dan ML di BigQuery.