ML-Metadaten verwalten

In dieser Anleitung wird beschrieben, wie Sie Ihre ML-Metadaten verwalten.

Hinweis

Wenn Sie zum Beispiel in einem Google Cloud-Projekt Vertex ML Metadata verwenden, erstellt Vertex AI den Metadatenspeicher Ihres Projekts.

Wenn Ihre Metadaten mit einem vom Kunden verwalteten Verschlüsselungsschlüssel (Customer-Managed Encryption Key, CMEK) verschlüsselt werden sollen, müssen Sie Ihren Metadatenspeicher mit einem CMEK erstellen, bevor Sie Metadaten mit Vertex ML Metadata verfolgen oder analysieren. Verwenden Sie die Anleitung Erstellen eines Metadatenspeichers, der ein CMEK verwendet, um den Metadatenspeicher Ihres Projekts zu konfigurieren.

Artefaktverwaltung

Artefakt erstellen

So erstellen Sie ein Artefakt:

REST UND BEFEHLSZEILE

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • LOCATION: Ihre Region.
  • PROJECT: Ihre Projekt-ID.
  • METADATA_STORE: Die ID des Metadatenspeichers, in dem das Artefakt erstellt wird. Der Standardmetadatenspeicher heißt default.
  • ARTIFACT_ID: (Optional) Die ID des Artefakteintrags. Wenn die Artefakt-ID nicht angegeben ist, haben Vertex ML-Metadaten eine eindeutige Kennzeichnung für dieses Artefakt erstellt.
  • DISPLAY_NAME: Der Anzeigename des Artefakts. Dieses Feld kann bis zu 128 Unicode-Zeichen enthalten.
  • URI: (Optional) Der Standort, an dem das Artefakt gespeichert ist.
  • ARTIFACT_STATE: (Optional) Ein Wert aus der State-Aufzählung, der den aktuellen Status des Artefakts darstellt. Dieses Feld wird von Clientanwendungen verwaltet. Vertex ML-Metadaten prüfen nicht die Gültigkeit von Statusübergängen.
  • METADATA_SCHEMA_TITLE: Der Titel des Schemas, das das Metadatenfeld beschreibt. Der Titel des Schemas muss das Format "." haben. Der Namespace muss mit einem Kleinbuchstaben beginnen, kann Kleinbuchstaben und Ziffern enthalten und kann zwischen 2 und 20 Zeichen lang sein. Der Schemaname muss mit einem Großbuchstaben beginnen, kann Buchstaben und Ziffern enthalten und kann zwischen 2 und 49 Zeichen lang sein.
  • METADATA_SCHEMA_VERSION: Die Version des Schemas, das das Metadatenfeld beschreibt. schema_version muss ein String mit drei Zahlen sein, die durch Punkte getrennt sind, z. B. 1.0.0, 1.0.1. Dieses Format vereinfacht das Sortieren und Vergleichen von Versionen.
  • METADATA: (Optional) Attribute, die das Artefakt beschreiben, z. B. den Dataset-Typ.
  • DESCRIPTION: (Optional) Eine Beschreibung der Ausführung.

HTTP-Methode und URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/artifacts?artifactId=ARTIFACT_ID

JSON-Text anfordern:

{
  "displayName": "DISPLAY_NAME",
  "uri": "URI",
  "state": "ARTIFACT_STATE",
  "schemaTitle": "METADATA_SCHEMA_TITLE",
  "schemaVersion": "METADATA_SCHEMA_VERSION",
  "metadata": {
    METADATA
  },
  "description": "DESCRIPTION"
}

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Sie müssten in etwa folgende JSON-Antwort erhalten:

{
  "name": "projects/PROJECT/locations/LOCATION/metadataStores/default/artifacts/ARTIFACT_ID",
  "displayName": "Example artifact",
  "uri": "gs://your_bucket_name/artifacts/dataset.csv",
  "etag": "67891011",
  "createTime": "2021-05-18T00:29:24.344Z",
  "updateTime": "2021-05-18T00:29:24.344Z",
  "state": "LIVE",
  "schemaTitle": "system.Dataset",
  "schemaVersion": "0.0.1",
  "metadata": {
    "payload_format": "CSV"
  },
  "description": "Description of the example artifact."
}

Python

Python

def create_artifact_sample(
    project: str,
    location: str,
    uri: Optional[str] = None,
    artifact_id: Optional[str] = None,
    display_name: Optional[str] = None,
    schema_version: Optional[str] = None,
    description: Optional[str] = None,
    metadata: Optional[Dict] = None,
):
    system_artifact_schema = artifact_schema.Artifact(
        uri=uri,
        artifact_id=artifact_id,
        display_name=display_name,
        schema_version=schema_version,
        description=description,
        metadata=metadata,
    )
    return system_artifact_schema.create(project=project, location=location,)
  • project: Ihre Projekt-ID. Sie finden diese IDs auf der Begrüßungsseite der Console.
  • location: Siehe Liste der verfügbaren Standorte.
  • uri: (Optional) Die URI (Uniform Resource Identifier) für die Artefaktdatei, falls vorhanden. Kann leer sein, wenn keine tatsächliche Artefaktdatei vorhanden ist.
  • artifact_id: Der RESOURCE_ID-Teil des Artefaktnamens mit dem folgenden Format. Dies ist in einem Metadatenspeicher global einmalig: projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE_ID/artifacts/RESOURCE_ID.
  • display_name: Geben Sie einen Namen für das Artefakt an.
  • schema_version: Die Version des Schemas, das das Metadatenfeld beschreibt.
  • description: (Optional) Ein menschenlesbarer String, der den Zweck des zu erstellenden Artefakts beschreibt.
  • metadata: Attribute, die die Ausführung beschreiben, z. B. die Ausführungsparameter.

Vorhandenes Artefakt suchen

Artefakte stellen Daten dar, die von Ihrem ML-Workflow verwendet oder erstellt werden, z. B. Datasets und Modelle. So suchen Sie ein vorhandenes Artefakt:

REST UND BEFEHLSZEILE

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • LOCATION: Ihre Region.
  • PROJECT: Ihre Projekt-ID.
  • METADATA_STORE: Die ID des Metadatenspeichers, in dem das Artefakt erstellt wird. Der Standardmetadatenspeicher heißt default.
  • PAGE_SIZE: (Optional) Die maximale Anzahl der zurückzugebenden Artefakte. Wenn dieser Wert nicht angegeben ist, gibt der Dienst maximal 100 Einträge zurück.
  • PAGE_TOKEN: (Optional) Ein Seitentoken aus einem vorherigen Aufruf von MetadataService.ListArtifacts. Geben Sie dieses Token an, um die nächste Ergebnisseite abzurufen.
  • FILTER: Gibt die Bedingungen an, die erforderlich sind, um eine Ausführung in die Ergebnismenge aufzunehmen.

HTTP-Methode und URL:

GET https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/artifacts?pageSize=PAGE_SIZE&pageToken=PAGE_TOKEN&filter=FILTER

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Die Ausgabe sieht in etwa so aus: ARTIFACT_ID: (Optional) Die ID des Artefakteintrags.

{
  "artifacts": [
    {
      "name": "projects/PROJECT/locations/LOCATION/metadataStores/default/artifacts/ARTIFACT_ID",
      "displayName": "Example artifact",
      "uri": "gs://your_bucket_name/artifacts/dataset.csv",
      "etag": "67891011",
      "createTime": "2021-05-18T00:33:13.833Z",
      "updateTime": "2021-05-18T00:33:13.833Z",
      "state": "LIVE",
      "schemaTitle": "system.Dataset",
      "schemaVersion": "0.0.1",
      "metadata": {
        "payload_format": "CSV"
      },
      "description": "Description of the example artifact."
    },
    {
      "name": "projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/artifacts/ARTIFACT_ID",
      "displayName": "Another example artifact",
      "uri": "gs://your_bucket_name/artifacts/dataset-2.csv",
      "etag": "67891012",
      "createTime": "2021-05-18T00:29:24.344Z",
      "updateTime": "2021-05-18T00:29:24.344Z",
      "state": "LIVE",
      "schemaTitle": "system.Dataset",
      "schemaVersion": "0.0.1",
      "metadata": {
        "payload_format": "CSV"
      },
      "description": "Description of the other example artifact."
    }
  ]
}

Vorhandenes Artefakt löschen

So löschen Sie ein Artefakt:

REST UND BEFEHLSZEILE

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • LOCATION: Ihre Region.
  • PROJECT: Ihre Projekt-ID.
  • METADATA_STORE: Die ID des Metadatenspeichers, in dem das Artefakt erstellt wird. Der Standardmetadatenspeicher heißt default.
  • ARTIFACT_ID: Die ID des zu löschenden Artefakteintrags.

HTTP-Methode und URL:

DELETE https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/artifacts/ARTIFACT_ID

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Die Ausgabe sieht in etwa so aus: Sie können OPERATION_ID in der Antwort verwenden, um den Status des Vorgangs abzurufen.

{
  "name": "projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/artifacts/ARTIFACT_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.DeleteOperationMetadata",
    "genericMetadata": {
      "createTime": "2021-07-21T20:05:30.179713Z",
      "updateTime": "2021-07-21T20:05:30.179713Z"
    }
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.protobuf.Empty"
  }
}

Artefakte dauerhaft löschen

Verwenden Sie die folgende Anleitung, um mehrere Artefakte basierend auf einer Filterbedingung zu löschen.

REST UND BEFEHLSZEILE

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • LOCATION: Ihre Region.
  • PROJECT: Ihre Projekt-ID.
  • METADATA_STORE: Die ID des Metadatenspeichers, in dem das Artefakt erstellt wird. Der Standardmetadatenspeicher heißt default.
  • FILTER: Gibt die Bedingungen an, die für die zu löschenden Artefakte erforderlich sind. Beispiel:
    • Filter für alle Artefakte, die example im Anzeigenamen enthalten: "display_name = \"*example*\"".
    • Filter für alle Artefakte, die vor dem 19.11.2020T11:30:00-04:00 erstellt wurden: "create_time < \"2020-11-19T11:30:00-04:00\"".
  • FORCE: Gibt an, ob der tatsächliche Löschvorgang ausgeführt werden soll oder nicht. Wenn das Flag auf „false” gesetzt ist, gibt die Methode eine Stichprobe von Artefaktnamen zurück, die gelöscht werden würden.

HTTP-Methode und URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/artifacts:purge

JSON-Text anfordern:

{
  "filter": "FILTER",
  "force": FORCE
}

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Die Ausgabe sieht in etwa so aus: Sie können OPERATION_ID in der Antwort verwenden, um den Status des Vorgangs abzurufen.

{
  "name": "projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.PurgeArtifactsMetadata",
    "genericMetadata": {
      "createTime": "2021-07-21T21:02:33.757991Z",
      "updateTime": "2021-07-21T21:02:33.757991Z"
    }
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.PurgeArtifactsResponse",
    "purgeCount": "15"
  }
}

Ausführungsverwaltung

Ausführung erstellen

Ausführungen stellen einen Schritt in Ihrem ML-Workflow dar. Verwenden Sie die folgenden Anleitungen, um eine Ausführung zu erstellen.

REST UND BEFEHLSZEILE

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • LOCATION: Ihre Region.
  • PROJECT: Ihre Projekt-ID.
  • METADATA_STORE: Die ID des Metadatenspeichers, in dem die Ausführung erstellt wird. Der Standardmetadatenspeicher heißt default.
  • EXECUTION_ID: (Optional) Die ID des Ausführungseintrags.
  • DISPLAY_NAME: Der Anzeigename der Ausführung. Dieses Feld kann bis zu 128 Unicode-Zeichen enthalten.
  • EXECUTION_STATE: (Optional) Ein Wert aus der State-Aufzählung der den aktuellen Status der Ausführung darstellt. Dieses Feld wird von Clientanwendungen verwaltet. Vertex ML-Metadaten prüfen nicht die Gültigkeit von Statusübergängen.
  • METADATA_SCHEMA_TITLE: Der Titel des Schemas, das das Metadatenfeld beschreibt. Der Titel des Schemas muss das Format "." haben. Der Namespace muss mit einem Kleinbuchstaben beginnen, kann Kleinbuchstaben und Ziffern enthalten und kann zwischen 2 und 20 Zeichen lang sein. Der Schemaname muss mit einem Großbuchstaben beginnen, kann Buchstaben und Ziffern enthalten und kann zwischen 2 und 49 Zeichen lang sein.
  • METADATA_SCHEMA_VERSION: Die Version des Schemas, das das Metadatenfeld beschreibt. schema_version muss ein String mit drei Zahlen sein, die durch Punkte getrennt sind, z. B. 1.0.0, 1.0.1. Dieses Format vereinfacht das Sortieren und Vergleichen von Versionen.
  • METADATA: (Optional) Attribute, die die Ausführung beschreiben, z. B. die Ausführungsparameter.
  • DESCRIPTION: (Optional) Eine Beschreibung der Ausführung.

HTTP-Methode und URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/executions?executionId=EXECUTION_ID

JSON-Text anfordern:

{
  "displayName": "DISPLAY_NAME",
  "state": "EXECUTION_STATE",
  "schemaTitle": "METADATA_SCHEMA_TITLE",
  "schemaVersion": "METADATA_SCHEMA_VERSION",
  "metadata": {
    METADATA
  },
  "description": "DESCRIPTION"
}

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Sie müssten in etwa folgende JSON-Antwort erhalten:

{
  "name": "projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/executions/EXECUTION_ID",
  "displayName": "Example Execution",
  "etag": "67891011",
  "createTime": "2021-05-18T00:04:49.659Z",
  "updateTime": "2021-05-18T00:04:49.659Z",
  "schemaTitle": "system.Run",
  "schemaVersion": "0.0.1",
  "metadata": {},
  "description": "Description of the example execution."
}

Python

Python

def create_execution_sample(
    display_name: str,
    input_artifacts: List[aiplatform.Artifact],
    output_artifacts: List[aiplatform.Artifact],
    project: str,
    location: str,
    execution_id: Optional[str] = None,
    metadata: Optional[Dict[str, Any]] = None,
    schema_version: Optional[str] = None,
    description: Optional[str] = None,
):
    aiplatform.init(project=project, location=location)

    with execution_schema.ContainerExecution(
        display_name=display_name,
        execution_id=execution_id,
        metadata=metadata,
        schema_version=schema_version,
        description=description,
    ).create() as execution:
        execution.assign_input_artifacts(input_artifacts)
        execution.assign_output_artifacts(output_artifacts)
        return execution
  • display_name: Geben Sie einen Namen für die Ausführung an.
  • input_artifacts: Eine Instanz von aiplatform.Artifact, die ein Eingabeartefakt darstellt.
  • output_artifacts: Eine Instanz von aiplatform.Artifact, die ein Ausgabeartefakt darstellt.
  • project: Ihre Projekt-ID. Sie finden diese IDs auf der Begrüßungsseite der Console.
  • location: Siehe Liste der verfügbaren Standorte.
  • execution_id: Die ID des Ausführungsdatensatzes. Wenn die Ausführungs-ID nicht angegeben ist, hat Vertex ML-Metadaten eine eindeutige Kennzeichnung für diese Ausführung erstellt.
  • metadata: Attribute, die die Ausführung beschreiben, z. B. die Ausführungsparameter.
  • schema_version: Die Version des Schemas, das das Metadatenfeld beschreibt.
  • description: (Optional) Ein menschenlesbarer String, der den Zweck der zu erstellenden Ausführung beschreibt.

Vorhandene Ausführung suchen

Folgen Sie dieser Anleitung, um eine vorhandene Ausführung zu suchen.

REST UND BEFEHLSZEILE

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • LOCATION: Ihre Region.
  • PROJECT: Ihre Projekt-ID.
  • METADATA_STORE: Die ID des Metadatenspeichers, in dem die Ausführung erstellt wird. Der Standardmetadatenspeicher heißt default.
  • PAGE_SIZE: (Optional) Die maximale Anzahl der zurückzugebenden Artefakte. Wenn dieser Wert nicht angegeben ist, gibt der Dienst maximal 100 Einträge zurück.
  • PAGE_TOKEN: (Optional) Ein Seitentoken aus einem vorherigen Aufruf von MetadataService.ListArtifacts. Geben Sie dieses Token an, um die nächste Ergebnisseite abzurufen.
  • FILTER: Gibt die Bedingungen an, die erforderlich sind, um eine Ausführung in die Ergebnismenge aufzunehmen.

HTTP-Methode und URL:

GET https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/executions?pageSize=PAGE_SIZE&pageToken=PAGE_TOKEN&filter=FILTER

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Die Ausgabe sieht in etwa so aus: EXECUTION_ID ist die ID des Ausführungsdatensatzes.

{
  "executions": [
    {
      "name": "projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/executions/EXECUTION_ID",
      "displayName": "Example execution 1",
      "etag": "67891011",
      "createTime": "2021-05-18T00:06:56.177Z",
      "updateTime": "2021-05-18T00:06:56.177Z",
      "schemaTitle": "system.Run",
      "schemaVersion": "0.0.1",
      "metadata": {},
      "description": "Description of the example execution."
    },
    {
      "name": "projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/executions/EXECUTION_ID",
      "displayName": "Example execution 2",
      "etag": "67891011",
      "createTime": "2021-05-18T00:04:49.659Z",
      "updateTime": "2021-05-18T00:04:49.659Z",
      "schemaTitle": "system.Run",
      "schemaVersion": "0.0.1",
      "metadata": {},
      "description": "Descrption of the example execution."
    }
  ]
}

Vorhandene Ausführung löschen

So löschen Sie eine Ausführung:

REST UND BEFEHLSZEILE

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • LOCATION: Ihre Region.
  • PROJECT: Ihre Projekt-ID.
  • METADATA_STORE: Die ID des Metadatenspeichers, in dem die Ausführung erstellt wird. Der Standardmetadatenspeicher heißt default.
  • EXECUTION_ID: Die ID des zu löschenden Ausführungseintrags.

HTTP-Methode und URL:

DELETE https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/executions/EXECUTION_ID

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Die Ausgabe sieht in etwa so aus: Sie können OPERATION_ID in der Antwort verwenden, um den Status des Vorgangs abzurufen.

{
  "name": "projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/executions/EXECUTION_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.DeleteOperationMetadata",
    "genericMetadata": {
      "createTime": "2021-07-21T20:05:30.179713Z",
      "updateTime": "2021-07-21T20:05:30.179713Z"
    }
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.protobuf.Empty"
  }
}

Löschvorgänge ausführen

Anhand der folgenden Anleitung können Sie mehrere Ausführungen basierend auf einem Filter löschen.

REST UND BEFEHLSZEILE

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • LOCATION: Ihre Region.
  • PROJECT: Ihre Projekt-ID.
  • METADATA_STORE: Die ID des Metadatenspeichers, in dem die Ausführung erstellt wird. Der Standardmetadatenspeicher heißt default.
  • FILTER: Gibt die Bedingungen an, die von den zu löschenden Ausführungen benötigt werden. Beispiel:
    • Filter für alle Ausführungen, die example im Anzeigenamen enthalten: "display_name = \"*example*\"".
    • Filter für alle Ausführungen, die vor dem 19.11.2020T11:30:00-04:00 erstellt wurden: "create_time < \"2020-11-19T11:30:00-04:00\"".
  • FORCE: Gibt an, ob der tatsächliche Löschvorgang ausgeführt werden soll oder nicht. Wenn das Flag auf „false” gesetzt ist, gibt die Methode eine Stichprobe von Artefaktnamen zurück, die gelöscht werden würden.

HTTP-Methode und URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/executions:purge

JSON-Text anfordern:

{
  "filter": "FILTER",
  "force": FORCE
}

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Die Ausgabe sieht in etwa so aus: Sie können OPERATION_ID in der Antwort verwenden, um den Status des Vorgangs abzurufen.

{
  "name": "projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.PurgeExecutionsMetadata",
    "genericMetadata": {
      "createTime": "2021-07-21T21:02:45.757991Z",
      "updateTime": "2021-07-21T21:02:45.757991Z"
    }
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.PurgeExecutionsResponse",
    "purgeCount": "2"
  }
}

Kontextverwaltung

Kontext erstellen

Mit Kontexten können Sie Gruppen von Artefakten und Ausführungen gruppieren. Gehen Sie nach der folgenden Anleitung vor, um einen Kontext zu erstellen.

REST UND BEFEHLSZEILE

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • LOCATION: Ihre Region.
  • PROJECT: Ihre Projekt-ID.
  • METADATA_STORE: Die ID des Metadatenspeichers, in dem die Ausführung erstellt wird. Der Standardmetadatenspeicher heißt default.
  • CONTEXT_ID: Die ID des Kontext-Eintrags. Wenn keine Kontext-ID angegeben ist, haben Vertex ML-Metadaten für diesen Kontext eine eindeutige Kennzeichnung erstellt.
  • DISPLAY_NAME: Der Anzeigename des Kontexts. Dieses Feld kann bis zu 128 Unicode-Zeichen enthalten.
  • PARENT_CONTEXT: Geben Sie den Ressourcennamen für alle übergeordneten Kontexte an. Ein Kontext kann nicht mehr als 10 übergeordnete Kontexte haben.
  • METADATA_SCHEMA_TITLE: Der Titel des Schemas, das das Metadatenfeld beschreibt. Der Titel des Schemas muss das Format "." haben. Der Namespace muss mit einem Kleinbuchstaben beginnen, kann Kleinbuchstaben und Ziffern enthalten und kann zwischen 2 und 20 Zeichen lang sein. Der Schemaname muss mit einem Großbuchstaben beginnen, kann Buchstaben und Ziffern enthalten und kann zwischen 2 und 49 Zeichen lang sein.
  • METADATA_SCHEMA_VERSION: Die Version des Schemas, das das Metadatenfeld beschreibt. schema_version muss ein String mit drei Zahlen sein, die durch Punkte getrennt sind, z. B. 1.0.0, 1.0.1. Dieses Format vereinfacht das Sortieren und Vergleichen von Versionen.
  • METADATA: (Optional) Attribute, die den Kontext beschreiben.
  • DESCRIPTION: (Optional) Eine Beschreibung der Ausführung.

HTTP-Methode und URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/contexts?contextId=CONTEXT_ID

JSON-Text anfordern:

{
  "displayName": "DISPLAY_NAME:",
  "parentContexts": [
    "PARENT_CONTEXT_1",
    "PARENT_CONTEXT_2"
  ],
  "schemaTitle": "METADATA_SCHEMA_TITLE",
  "schemaVersion": "METADATA_SCHEMA_VERSION",
  "metadata": {
    METADATA
  },
  "description": "DESCRIPTION"
}

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Die Ausgabe sieht in etwa so aus: CONTEXT_ID: Die ID des Kontext-Eintrags.

{
  "name": "projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/contexts/CONTEXT_ID",
  "displayName": "Example context:",
  "etag": "67891011",
  "createTime": "2021-05-18T01:52:51.642Z",
  "updateTime": "2021-05-18T01:52:51.642Z",
  "schemaTitle": "system.Experiment",
  "schemaVersion": "0.0.1",
  "metadata": {},
  "description": "Description of the example context."
}

Vorhandenen Kontext suchen

Gehen Sie wie unten beschrieben vor, um einen vorhandenen Kontext zu suchen.

REST UND BEFEHLSZEILE

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • LOCATION: Ihre Region.
  • PROJECT: Ihre Projekt-ID.
  • METADATA_STORE: Die ID des Metadatenspeichers, in dem die Ausführung erstellt wird. Der Standardmetadatenspeicher heißt default.
  • PAGE_SIZE: (Optional) Die maximale Anzahl der zurückzugebenden Artefakte. Wenn dieser Wert nicht angegeben ist, gibt der Dienst maximal 100 Einträge zurück.
  • PAGE_TOKEN: (Optional) Ein Seitentoken aus einem vorherigen Aufruf von MetadataService.ListArtifacts. Geben Sie dieses Token an, um die nächste Ergebnisseite abzurufen.
  • FILTER: Gibt die Bedingungen an, die erforderlich sind, um einen Kontext in die Ergebnismenge aufzunehmen.

HTTP-Methode und URL:

GET https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/contexts?pageSize=PAGE_SIZE&pageToken=PAGE_TOKEN&filter=FILTER

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Die Ausgabe sieht in etwa so aus: CONTEXT_ID: Die ID des Kontext-Eintrags.

{
  "contexts": [
    {
      "name": "projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/contexts/CONTEXT_ID",
      "displayName": "Experiment 1",
      "etag": "67891011",
      "createTime": "2021-05-18T22:36:02.153Z",
      "updateTime": "2021-05-18T22:36:02.153Z",
      "parentContexts": [],
      "schemaTitle": "system.Experiment",
      "schemaVersion": "0.0.1",
      "metadata": {}
    },
    {
      "name": "projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/contexts/CONTEXT_ID",
      "displayName": "Pipeline run 1",
      "etag": "67891011",
      "createTime": "2021-05-18T22:35:02.600Z",
      "updateTime": "2021-05-18T22:35:02.600Z",
      "parentContexts": [],
      "schemaTitle": "system.PipelineRun",
      "schemaVersion": "0.0.1",
      "metadata": {}
    }
  ]
}

Vorhandenen Kontext löschen

Folgen Sie der Anleitung unten, um einen Kontext zu löschen.

REST UND BEFEHLSZEILE

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • LOCATION: Ihre Region.
  • PROJECT: Ihre Projekt-ID.
  • METADATA_STORE: Die ID des Metadatenspeichers, in dem die Ausführung erstellt wird. Der Standardmetadatenspeicher heißt default.
  • CONTEXT_ID: Die ID des Kontext-Eintrags.

HTTP-Methode und URL:

DELETE https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/contexts/CONTEXT_ID

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Die Ausgabe sieht in etwa so aus: Sie können OPERATION_ID in der Antwort verwenden, um den Status des Vorgangs abzurufen.

{
  "name": "projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/contexts/CONTEXT_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.DeleteOperationMetadata",
    "genericMetadata": {
      "createTime": "2021-07-21T20:05:30.179713Z",
      "updateTime": "2021-07-21T20:05:30.179713Z"
    }
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.protobuf.Empty"
  }
}

Kontexte dauerhaft löschen

Verwenden Sie die folgende Anleitung, um mehrere Kontexte basierend auf einer Filterbedingung zu löschen.

REST UND BEFEHLSZEILE

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • LOCATION: Ihre Region.
  • PROJECT: Ihre Projekt-ID.
  • METADATA_STORE: Die ID des Metadatenspeichers, in dem die Ausführung erstellt wird. Der Standardmetadatenspeicher heißt default.
  • FILTER: Gibt die Bedingungen an, die für die zu löschenden Kontexte erforderlich sind. Beispiel:
    • Filter für alle Kontexte, die example im angezeigten Namen enthalten: "display_name = \"*example*\"".
    • Filter für alle Kontexte, die vor 2020-11-19T11:30:00-04:00 erstellt wurden: "create_time < \"2020-11-19T11:30:00-04:00\"".
  • FORCE: Gibt an, ob der tatsächliche Löschvorgang ausgeführt werden soll oder nicht. Wenn das Flag auf "false" gesetzt ist, gibt die Methode eine Stichprobe von Kontextnamen zurück, die gelöscht werden würden.

HTTP-Methode und URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/contexts:purge

JSON-Text anfordern:

{
  "filter": "FILTER",
  "force": FORCE
}

Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:

Die Ausgabe sieht in etwa so aus: Sie können OPERATION_ID in der Antwort verwenden, um den Status des Vorgangs abzurufen.

{
  "name": "projects/PROJECT/locations/LOCATION/metadataStores/METADATA_STORE/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.PurgeContextsMetadata",
    "genericMetadata": {
      "createTime": "2021-07-21T21:02:40.757991Z",
      "updateTime": "2021-07-21T21:02:40.757991Z"
    }
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.PurgeContextsResponse",
    "purgeCount": "5"
  }
}

Nächste Schritte