RAG-Chatbot mit GKE und Cloud Storage erstellen


In dieser Anleitung erfahren Sie, wie Sie eine LLM-Anwendung (Large Language Model) auf der Grundlage von Retrieval Augmented Generation (RAG) in PDF-Dateien einbinden, die Sie in einen Cloud Storage-Bucket hochladen.

In diesem Leitfaden wird eine Datenbank als Speicher- und semantische Suchmaschine verwendet, die die Darstellungen (Einbettungen) der hochgeladenen Dokumente enthält. Sie verwenden das Langchain-Framework, um mit den Einbettungen zu interagieren, und Gemini-Modelle, die über Vertex AI verfügbar sind.

Langchain ist ein beliebtes Open-Source-Python-Framework, das viele Aufgaben des maschinellen Lernens vereinfacht und Schnittstellen zur Einbindung in verschiedene Vektordatenbanken und KI-Dienste bietet.

Diese Anleitung richtet sich an Cloud Platform-Administratoren und -Architekten, ML-Entwickler und MLOps-Experten (DevOps), die an der Bereitstellung von RAG LLM-Anwendungen interessiert sind. 101}zu GKE und Cloud Storage.

Ziele

In dieser Anleitung erfahren Sie mehr über die folgenden Themen:

  • Anwendung erstellen und bereitstellen, um Dokumenteinbettungen in einer Vektordatenbank zu erstellen und zu speichern.
  • Automatisieren Sie die Anwendung, um neue Dokumentuploads in einen Cloud Storage-Bucket auszulösen.
  • Stellen Sie eine Chatbot-Anwendung bereit, die mithilfe der semantischen Suche Fragen anhand des Dokumenteninhalts beantwortet.

Bereitstellungsarchitektur

In dieser Anleitung erstellen Sie einen Cloud Storage-Bucket, einen Eventarc-Trigger und die folgenden Dienste:

  • embed-docs: Eventarc löst diesen Dienst jedes Mal aus, wenn ein Nutzer ein neues Dokument in den Cloud Storage-Bucket hochlädt. Der Dienst startet einen Kubernetes-Job, der Einbettungen für das hochgeladene Dokument erstellt und die Einbettungen in eine Vektordatenbank einfügt.
  • chatbot: Dieser Dienst beantwortet Fragen in natürlicher Sprache zu den hochgeladenen Dokumenten mithilfe der semantischen Suche und der Gemini API.

Das folgende Diagramm zeigt den Vorgang zum Hochladen und Vektorisieren von Dokumenten:

Im Diagramm lädt der Nutzer Dateien in den Cloud Storage-Bucket hoch. Eventarc abonniert metadataUpdated-Objekt-Ereignisse für den Bucket und verwendet den Ereignis-Forwarder von Eventarc, eine Kubernetes-Arbeitslast, um den embed-docs-Dienst aufzurufen, wenn Sie ein neues Dokument hochladen. Der Dienst erstellt dann Einbettungen für das hochgeladene Dokument. Der embed-docs-Dienst speichert die Einbettungen mit dem Vertex AI-Einbettungsmodell in einer Vektordatenbank.

Das folgende Diagramm zeigt, wie Fragen zum hochgeladenen Dokumentinhalt mit dem Dienst chatbot gestellt werden:

Nutzer können Fragen mit natürlicher Sprache stellen. Der Chatbot generiert Antworten ausschließlich auf Grundlage des Inhalts der hochgeladenen Dateien. Der Chatbot ruft den Kontext mithilfe der semantischen Suche aus der Vektordatenbank ab und sendet dann die Frage und den Kontext an Gemini.

Kosten

In diesem Dokument verwenden Sie die folgenden kostenpflichtigen Komponenten von Google Cloud:

Mit dem Preisrechner können Sie eine Kostenschätzung für Ihre voraussichtliche Nutzung vornehmen. Neuen Google Cloud-Nutzern steht möglicherweise eine kostenlose Testversion zur Verfügung.

Nach Abschluss der in diesem Dokument beschriebenen Aufgaben können Sie weitere Kosten vermeiden, indem Sie die erstellten Ressourcen löschen. Weitere Informationen finden Sie unter Bereinigen.

Hinweise

In dieser Anleitung verwenden Sie Cloud Shell zum Ausführen von Befehlen. Cloud Shell ist eine Shell-Umgebung für die Verwaltung von Ressourcen, die in Google Cloud gehostet werden. Cloud Shell wird mit den Befehlszeilentools Google Cloud CLI, kubectl und istioctl vorinstalliert. Wenn Sie Cloud Shell nicht verwenden, installieren Sie die Google Cloud CLI.

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. Install the Google Cloud CLI.
  3. To initialize the gcloud CLI, run the following command:

    gcloud init
  4. Create or select a Google Cloud project.

    • Create a Google Cloud project:

      gcloud projects create PROJECT_ID

      Replace PROJECT_ID with a name for the Google Cloud project you are creating.

    • Select the Google Cloud project that you created:

      gcloud config set project PROJECT_ID

      Replace PROJECT_ID with your Google Cloud project name.

  5. Make sure that billing is enabled for your Google Cloud project.

  6. Enable the Vertex AI, Cloud Build, Eventarc, Artifact Registry APIs:

    gcloud services enable aiplatform.googleapis.com cloudbuild.googleapis.com eventarc.googleapis.com artifactregistry.googleapis.com
  7. Install the Google Cloud CLI.
  8. To initialize the gcloud CLI, run the following command:

    gcloud init
  9. Create or select a Google Cloud project.

    • Create a Google Cloud project:

      gcloud projects create PROJECT_ID

      Replace PROJECT_ID with a name for the Google Cloud project you are creating.

    • Select the Google Cloud project that you created:

      gcloud config set project PROJECT_ID

      Replace PROJECT_ID with your Google Cloud project name.

  10. Make sure that billing is enabled for your Google Cloud project.

  11. Enable the Vertex AI, Cloud Build, Eventarc, Artifact Registry APIs:

    gcloud services enable aiplatform.googleapis.com cloudbuild.googleapis.com eventarc.googleapis.com artifactregistry.googleapis.com
  12. Grant roles to your user account. Run the following command once for each of the following IAM roles: eventarc.admin

    gcloud projects add-iam-policy-binding PROJECT_ID --member="user:USER_IDENTIFIER" --role=ROLE
    • Replace PROJECT_ID with your project ID.
    • Replace USER_IDENTIFIER with the identifier for your user account. For example, user:myemail@example.com.

    • Replace ROLE with each individual role.

Cluster erstellen

Erstellen Sie einen Qdrant-, Elasticsearch- oder Postgres-Cluster:

Qdrant

Folgen Sie der Anleitung unter Qdrant-Vektordatenbank in GKE bereitstellen, um einen Qdrant-Cluster zu erstellen, der auf einem GKE-Cluster im Autopilot- oder Standardmodus ausgeführt wird.

Elasticsearch

Folgen Sie der Anleitung unter Elasticsearch-Vektordatenbank in GKE bereitstellen, um einen Elasticsearch-Cluster zu erstellen, der auf einem GKE-Cluster im Autopilot- oder Standardmodus ausgeführt wird.

PGVector

Folgen Sie der Anleitung unter PostgreSQL-Vektordatenbank in GKE bereitstellen, um einen Postgres-Cluster mit PGVector in einem GKE-Cluster im Autopilot- oder Standardmodus zu erstellen.

Weaviate

Folgen Sie der Anleitung unter Weaviate-Vektordatenbank in GKE bereitstellen, um einen Weaviate-Cluster zu erstellen, der auf einem GKE-Cluster im Autopilot- oder Standardmodus ausgeführt wird.

Umgebung einrichten

So richten Sie Ihre Umgebung mit Cloud Shell ein:

  1. Legen Sie Umgebungsvariablen für Ihr Projekt fest:

    Qdrant

    export PROJECT_ID=PROJECT_ID
    export KUBERNETES_CLUSTER_PREFIX=qdrant
    export REGION=us-central1
    export DB_NAMESPACE=qdrant
    

    Ersetzen Sie PROJECT_ID durch Ihre Google Cloud-Projekt-ID.

    Elasticsearch

    export PROJECT_ID=PROJECT_ID
    export KUBERNETES_CLUSTER_PREFIX=elasticsearch
    export REGION=us-central1
    export DB_NAMESPACE=elastic
    

    Ersetzen Sie PROJECT_ID durch Ihre Google Cloud-Projekt-ID.

    PGVector

    export PROJECT_ID=PROJECT_ID
    export KUBERNETES_CLUSTER_PREFIX=postgres
    export REGION=us-central1
    export DB_NAMESPACE=pg-ns
    

    Ersetzen Sie PROJECT_ID durch Ihre Google Cloud-Projekt-ID.

    Weaviate

    export PROJECT_ID=PROJECT_ID
    export KUBERNETES_CLUSTER_PREFIX=weaviate
    export REGION=us-central1
    export DB_NAMESPACE=weaviate
    

    Ersetzen Sie PROJECT_ID durch Ihre Google Cloud-Projekt-ID.

  2. Prüfen Sie, ob Ihr GKE-Cluster ausgeführt wird

    gcloud container clusters list --project=${PROJECT_ID} --region=${REGION}
    

    Die Ausgabe sieht in etwa so aus:

    NAME                                    LOCATION        MASTER_VERSION      MASTER_IP     MACHINE_TYPE  NODE_VERSION        NUM_NODES STATUS
    [KUBERNETES_CLUSTER_PREFIX]-cluster   us-central1   1.30.1-gke.1329003  <EXTERNAL IP> e2-standard-2 1.30.1-gke.1329003   6        RUNNING
    
  3. Klonen Sie das Beispielcode-Repository aus GitHub:

    git clone https://github.com/GoogleCloudPlatform/kubernetes-engine-samples
    
  4. Rufen Sie das Verzeichnis databases auf:

    cd kubernetes-engine-samples/databases
    

Infrastruktur vorbereiten

Erstellen Sie ein Artifact Registry-Repository, erstellen Sie Docker-Images und übertragen Sie sie per Push an Artifact Registry:

  1. Erstellen Sie ein Artifact Registry-Repository:

    gcloud artifacts repositories create ${KUBERNETES_CLUSTER_PREFIX}-images \
        --repository-format=docker \
        --location=${REGION} \
        --description="Vector database images repository" \
        --async
    
  2. Weisen Sie dem Compute Engine-Dienstkonto die Berechtigungen storage.objectAdmin und artifactregistry.admin zu, damit Cloud Build zum Erstellen und zur Push-Übertragung von Docker-Images für die embed-docs- und chatbot-Dienste verwendet werden kann.

    export PROJECT_NUMBER=PROJECT_NUMBER
    
    gcloud projects add-iam-policy-binding ${PROJECT_ID}  \
    --member="serviceAccount:${PROJECT_NUMBER}-compute@developer.gserviceaccount.com" \
    --role="roles/storage.objectAdmin"
    
    gcloud projects add-iam-policy-binding ${PROJECT_ID}  \
    --member="serviceAccount:${PROJECT_NUMBER}-compute@developer.gserviceaccount.com" \
    --role="roles/artifactregistry.admin"
    

    Ersetzen Sie PROJECT_NUMBER durch Ihre Google Cloud-Projektnummer.

  3. Erstellen Sie Docker-Images für die embed-docs- und chatbot-Dienste. Das Image embed-docs enthält Python-Code sowohl für die Anwendung, die Eventarc-Weiterleitungsanfragen empfängt, als auch für den Einbettungsjob.

    Qdrant

    export DOCKER_REPO="${REGION}-docker.pkg.dev/${PROJECT_ID}/${KUBERNETES_CLUSTER_PREFIX}-images"
    gcloud builds submit qdrant/docker/chatbot --region=${REGION} \
      --tag ${DOCKER_REPO}/chatbot:1.0 --async
    gcloud builds submit qdrant/docker/embed-docs --region=${REGION} \
      --tag ${DOCKER_REPO}/embed-docs:1.0 --async
    

    Elasticsearch

    export DOCKER_REPO="${REGION}-docker.pkg.dev/${PROJECT_ID}/${KUBERNETES_CLUSTER_PREFIX}-images"
    gcloud builds submit elasticsearch/docker/chatbot --region=${REGION} \
      --tag ${DOCKER_REPO}/chatbot:1.0 --async
    gcloud builds submit elasticsearch/docker/embed-docs --region=${REGION} \
      --tag ${DOCKER_REPO}/embed-docs:1.0 --async
    

    PGVector

    export DOCKER_REPO="${REGION}-docker.pkg.dev/${PROJECT_ID}/${KUBERNETES_CLUSTER_PREFIX}-images"
    gcloud builds submit postgres-pgvector/docker/chatbot --region=${REGION} \
      --tag ${DOCKER_REPO}/chatbot:1.0 --async
    gcloud builds submit postgres-pgvector/docker/embed-docs --region=${REGION} \
      --tag ${DOCKER_REPO}/embed-docs:1.0 --async
    

    Weaviate

    export DOCKER_REPO="${REGION}-docker.pkg.dev/${PROJECT_ID}/${KUBERNETES_CLUSTER_PREFIX}-images"
    gcloud builds submit weaviate/docker/chatbot --region=${REGION} \
      --tag ${DOCKER_REPO}/chatbot:1.0 --async
    gcloud builds submit weaviate/docker/embed-docs --region=${REGION} \
      --tag ${DOCKER_REPO}/embed-docs:1.0 --async
    
  4. Überprüfen Sie die Images:

    gcloud artifacts docker images list $DOCKER_REPO \
        --project=$PROJECT_ID \
        --format="value(IMAGE)"
    

    Die Ausgabe sieht in etwa so aus:

    $REGION-docker.pkg.dev/$PROJECT_ID/${KUBERNETES_CLUSTER_PREFIX}-images/chatbot
    $REGION-docker.pkg.dev/$PROJECT_ID/${KUBERNETES_CLUSTER_PREFIX}-images/embed-docs
    
  5. Stellen Sie ein Kubernetes-Dienstkonto mit Berechtigungen zum Ausführen von Kubernetes-Jobs bereit:

    Qdrant

    sed "s/<PROJECT_ID>/$PROJECT_ID/;s/<CLUSTER_PREFIX>/$KUBERNETES_CLUSTER_PREFIX/" qdrant/manifests/05-rag/service-account.yaml | kubectl -n qdrant apply -f -
    

    Elasticsearch

    sed "s/<PROJECT_ID>/$PROJECT_ID/;s/<CLUSTER_PREFIX>/$KUBERNETES_CLUSTER_PREFIX/" elasticsearch/manifests/05-rag/service-account.yaml | kubectl -n elastic apply -f -
    

    PGVector

    sed "s/<PROJECT_ID>/$PROJECT_ID/;s/<CLUSTER_PREFIX>/$KUBERNETES_CLUSTER_PREFIX/" postgres-pgvector/manifests/03-rag/service-account.yaml | kubectl -n pg-ns apply -f -
    

    Weaviate

    sed "s/<PROJECT_ID>/$PROJECT_ID/;s/<CLUSTER_PREFIX>/$KUBERNETES_CLUSTER_PREFIX/" weaviate/manifests/04-rag/service-account.yaml | kubectl -n weaviate apply -f -
    
  6. Wenn Sie den GKE-Cluster mit Terraform erstellen und create_service_account auf „true“ festgelegt haben, wird ein separates Dienstkonto erstellt und vom Cluster und den Knoten verwendet. Weisen Sie diesem Compute Engine-Dienstkonto die Rolle artifactregistry.serviceAgent zu, damit die Knoten das Image aus der Artifact Registry abrufen können, die für embed-docs und chatbot erstellt wurde.

    export CLUSTER_SERVICE_ACCOUNT=$(gcloud container clusters describe ${KUBERNETES_CLUSTER_PREFIX}-cluster \
    --region=${REGION} \
    --format="value(nodeConfig.serviceAccount)")
    
    gcloud projects add-iam-policy-binding ${PROJECT_ID}  \
    --member="serviceAccount:${CLUSTER_SERVICE_ACCOUNT}" \
    --role="roles/artifactregistry.serviceAgent"
    

    Falls Sie dem Dienstkonto keinen Zugriff gewähren, kann es bei Ihren Knoten zu Berechtigungsproblemen beim Abrufen des Images aus der Artifact Registry kommen, wenn die embed-docs- und chatbot-Dienste bereitgestellt werden.

  7. Stellen Sie ein Kubernetes-Deployment für die embed-docs- und chatbot-Dienste bereit:

    Qdrant

    sed "s|<DOCKER_REPO>|$DOCKER_REPO|" qdrant/manifests/05-rag/chatbot.yaml | kubectl -n qdrant apply -f -
    sed "s|<DOCKER_REPO>|$DOCKER_REPO|" qdrant/manifests/05-rag/docs-embedder.yaml | kubectl -n qdrant apply -f -
    

    Elasticsearch

    sed "s|<DOCKER_REPO>|$DOCKER_REPO|" elasticsearch/manifests/05-rag/chatbot.yaml | kubectl -n elastic apply -f -
    sed "s|<DOCKER_REPO>|$DOCKER_REPO|" elasticsearch/manifests/05-rag/docs-embedder.yaml | kubectl -n elastic apply -f -
    

    PGVector

    sed "s|<DOCKER_REPO>|$DOCKER_REPO|" postgres-pgvector/manifests/03-rag/chatbot.yaml | kubectl -n pg-ns apply -f -
    sed "s|<DOCKER_REPO>|$DOCKER_REPO|" postgres-pgvector/manifests/03-rag/docs-embedder.yaml | kubectl -n pg-ns apply -f -
    

    Weaviate

    sed "s|<DOCKER_REPO>|$DOCKER_REPO|" weaviate/manifests/04-rag/chatbot.yaml | kubectl -n weaviate apply -f -
    sed "s|<DOCKER_REPO>|$DOCKER_REPO|" weaviate/manifests/04-rag/docs-embedder.yaml | kubectl -n weaviate apply -f -
    
  8. Eventarc-Trigger für GKE aktivieren:

    gcloud eventarc gke-destinations init
    

    Geben Sie bei Aufforderung y ein.

  9. Stellen Sie den Cloud Storage-Bucket bereit und erstellen Sie mit Terraform einen Eventarc-Trigger:

    export GOOGLE_OAUTH_ACCESS_TOKEN=$(gcloud auth print-access-token)
    terraform -chdir=vector-database/terraform/cloud-storage init
    terraform -chdir=vector-database/terraform/cloud-storage apply \
      -var project_id=${PROJECT_ID} \
      -var region=${REGION} \
      -var cluster_prefix=${KUBERNETES_CLUSTER_PREFIX} \
      -var db_namespace=${DB_NAMESPACE}
    

    Geben Sie bei Aufforderung yes ein. Es kann einige Minuten dauern, bis der Befehl ausgeführt wurde.

    Terraform erstellt die folgenden Ressourcen:

    • Ein Cloud Storage-Bucket zum Hochladen der Dokumente
    • Eventarc-Trigger
    • Ein Google Cloud-Dienstkonto mit dem Namen service_account_eventarc_name und der Berechtigung zur Verwendung von Eventarc.
    • Ein Google Cloud-Dienstkonto mit dem Namen service_account_bucket_name mit Berechtigung zum Lesen des Buckets und zum Zugreifen auf Vertex AI-Modelle.

    Die Ausgabe sieht in etwa so aus:

    ... # Several lines of output omitted
    
    Apply complete! Resources: 15 added, 0 changed, 0 destroyed.
    
    ... # Several lines of output omitted
    

Dokumente laden und Chatbot-Abfragen ausführen

Laden Sie die Demodokumente hoch und führen Sie Suchanfragen mit dem Chatbot aus:

  1. Laden Sie das Beispieldokument carbon-free-energy.pdf in den Bucket hoch:

    gsutil cp vector-database/documents/carbon-free-energy.pdf gs://${PROJECT_ID}-${KUBERNETES_CLUSTER_PREFIX}-training-docs
    
  2. Prüfen Sie, ob der Job zum Einbetten von Dokumenten erfolgreich abgeschlossen wurde:

    kubectl get job -n ${DB_NAMESPACE}
    

    Die Ausgabe sieht in etwa so aus:

    NAME                            COMPLETIONS   DURATION   AGE
    docs-embedder1716570453361446   1/1           32s        71s
    
  3. Rufen Sie die externe IP-Adresse des Load-Balancers ab:

    export EXTERNAL_IP=$(kubectl -n ${DB_NAMESPACE} get svc chatbot --output jsonpath='{.status.loadBalancer.ingress[0].ip}')
    echo http://${EXTERNAL_IP}:80
    
  4. Öffnen Sie die externe IP-Adresse in Ihrem Webbrowser:

    http://EXTERNAL_IP
    

    Der Chatbot antwortet mit einer Nachricht wie dieser:

    How can I help you?
    
  5. Stellen Sie Fragen zum Inhalt der hochgeladenen Dokumente. Wenn der Chatbot nichts findet, antwortet er mit I don't know. Sie können zum Beispiel Folgendes fragen:

    You: Hi, what are Google plans for the future?
    

    Eine Beispielausgabe des Chatbots sieht in etwa so aus:

    Bot: Google intends to run on carbon-free energy everywhere, at all times by 2030. To achieve this, it will rely on a combination of renewable energy sources, such as wind and solar, and carbon-free technologies, such as battery storage.
    
  6. Sie stellen dem Chatbot eine Frage, die nicht zum Kontext des hochgeladenen Dokuments gehört. Sie könnten beispielsweise Folgendes fragen:

    You: What are Google plans to colonize Mars?
    

    Eine Beispielausgabe des Chatbots sieht in etwa so aus:

    Bot: I don't know. The provided context does not mention anything about Google's plans to colonize Mars.
    

Über den Anwendungscode

In diesem Abschnitt wird gezeigt, wie der Anwendungscode funktioniert. Die Docker-Images enthalten drei Scripts:

  • endpoint.py: empfängt Eventarc-Ereignisse bei jedem Dokumentupload und startet die Kubernetes-Jobs zur Verarbeitung.
  • embedding-job.py: Lädt Dokumente aus dem Bucket herunter, erstellt Einbettungen und fügt Einbettungen in die Vektordatenbank ein.
  • chat.py: Führt Abfragen für den Inhalt gespeicherter Dokumente aus.

Das Diagramm zeigt, wie Antworten mithilfe der Dokumentdaten generiert werden:

Im Diagramm lädt die Anwendung eine PDF-Datei, teilt die Datei in Blöcke auf, Vektoren und sendet die Vektoren dann an eine Vektordatenbank. Später stellt ein Nutzer dem Chatbot eine Frage. Die RAG-Kette verwendet die semantische Suche, um die Vektordatenbank zu durchsuchen, und gibt dann den Kontext zusammen mit der Frage an das LLM zurück. Das LLM beantwortet die Frage und speichert die Frage im Chatverlauf.

Über endpoint.py

In dieser Datei werden Nachrichten von Eventarc verarbeitet, ein Kubernetes-Job zum Einbetten des Dokuments erstellt und Anfragen von überall über Port 5001 akzeptiert.

Qdrant

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from flask import Flask, jsonify
from flask import request
import logging
import sys,os, time
from kubernetes import client, config, utils
import kubernetes.client
from kubernetes.client.rest import ApiException


app = Flask(__name__)
@app.route('/check')
def message():
    return jsonify({"Message": "Hi there"})


@app.route('/', methods=['POST'])
def bucket():
    request_data = request.get_json()
    print(request_data)
    bckt = request_data['bucket']
    f_name = request_data['name']
    id = request_data['generation'] 
    kube_create_job(bckt, f_name, id)
    return "ok"

# Set logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

# Setup K8 configs
config.load_incluster_config()
def kube_create_job_object(name, container_image, bucket_name, f_name, namespace="qdrant", container_name="jobcontainer", env_vars={}):

    body = client.V1Job(api_version="batch/v1", kind="Job")
    body.metadata = client.V1ObjectMeta(namespace=namespace, name=name)
    body.status = client.V1JobStatus()

    template = client.V1PodTemplate()
    template.template = client.V1PodTemplateSpec()
    env_list = [
        client.V1EnvVar(name="QDRANT_URL", value=os.getenv("QDRANT_URL")),
        client.V1EnvVar(name="COLLECTION_NAME", value="training-docs"), 
        client.V1EnvVar(name="FILE_NAME", value=f_name), 
        client.V1EnvVar(name="BUCKET_NAME", value=bucket_name),
        client.V1EnvVar(name="APIKEY", value_from=client.V1EnvVarSource(secret_key_ref=client.V1SecretKeySelector(key="api-key", name="qdrant-database-apikey"))), 
    ]

    container = client.V1Container(name=container_name, image=container_image, env=env_list)
    template.template.spec = client.V1PodSpec(containers=[container], restart_policy='Never', service_account='embed-docs-sa')

    body.spec = client.V1JobSpec(backoff_limit=3, ttl_seconds_after_finished=60, template=template.template)
    return body
def kube_test_credentials():
    try: 
        api_response = api_instance.get_api_resources()
        logging.info(api_response)
    except ApiException as e:
        print("Exception when calling API: %s\n" % e)

def kube_create_job(bckt, f_name, id):
    container_image = os.getenv("JOB_IMAGE")
    namespace = os.getenv("JOB_NAMESPACE")
    name = "docs-embedder" + id
    body = kube_create_job_object(name, container_image, bckt, f_name)
    v1=client.BatchV1Api()
    try: 
        v1.create_namespaced_job(namespace, body, pretty=True)
    except ApiException as e:
        print("Exception when calling BatchV1Api->create_namespaced_job: %s\n" % e)
    return

if __name__ == '__main__':
    app.run('0.0.0.0', port=5001, debug=True)

Elasticsearch

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from flask import Flask, jsonify
from flask import request
import logging
import sys,os, time
from kubernetes import client, config, utils
import kubernetes.client
from kubernetes.client.rest import ApiException


app = Flask(__name__)
@app.route('/check')
def message():
    return jsonify({"Message": "Hi there"})


@app.route('/', methods=['POST'])
def bucket():
    request_data = request.get_json()
    print(request_data)
    bckt = request_data['bucket']
    f_name = request_data['name']
    id = request_data['generation'] 
    kube_create_job(bckt, f_name, id)
    return "ok"

# Set logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

# Setup K8 configs
config.load_incluster_config()

def kube_create_job_object(name, container_image, bucket_name, f_name, namespace="elastic", container_name="jobcontainer", env_vars={}):

    body = client.V1Job(api_version="batch/v1", kind="Job")
    body.metadata = client.V1ObjectMeta(namespace=namespace, name=name)
    body.status = client.V1JobStatus()

    template = client.V1PodTemplate()
    template.template = client.V1PodTemplateSpec()
    env_list = [
        client.V1EnvVar(name="ES_URL", value=os.getenv("ES_URL")),
        client.V1EnvVar(name="INDEX_NAME", value="training-docs"), 
        client.V1EnvVar(name="FILE_NAME", value=f_name), 
        client.V1EnvVar(name="BUCKET_NAME", value=bucket_name),
        client.V1EnvVar(name="PASSWORD", value_from=client.V1EnvVarSource(secret_key_ref=client.V1SecretKeySelector(key="elastic", name="elasticsearch-ha-es-elastic-user"))), 
    ]

    container = client.V1Container(name=container_name, image=container_image, image_pull_policy='Always', env=env_list)
    template.template.spec = client.V1PodSpec(containers=[container], restart_policy='Never', service_account='embed-docs-sa')

    body.spec = client.V1JobSpec(backoff_limit=3, ttl_seconds_after_finished=60, template=template.template)
    return body

def kube_test_credentials():
    try: 
        api_response = api_instance.get_api_resources()
        logging.info(api_response)
    except ApiException as e:
        print("Exception when calling API: %s\n" % e)

def kube_create_job(bckt, f_name, id):
    container_image = os.getenv("JOB_IMAGE")
    namespace = os.getenv("JOB_NAMESPACE")
    name = "docs-embedder" + id
    body = kube_create_job_object(name, container_image, bckt, f_name)
    v1=client.BatchV1Api()
    try: 
        v1.create_namespaced_job(namespace, body, pretty=True)
    except ApiException as e:
        print("Exception when calling BatchV1Api->create_namespaced_job: %s\n" % e)
    return

if __name__ == '__main__':
    app.run('0.0.0.0', port=5001, debug=True)

PGVector

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from flask import Flask, jsonify
from flask import request
import logging
import sys,os, time
from kubernetes import client, config, utils
import kubernetes.client
from kubernetes.client.rest import ApiException


app = Flask(__name__)
@app.route('/check')
def message():
    return jsonify({"Message": "Hi there"})


@app.route('/', methods=['POST'])
def bucket():
    request_data = request.get_json()
    print(request_data)
    bckt = request_data['bucket']
    f_name = request_data['name']
    id = request_data['generation'] 
    kube_create_job(bckt, f_name, id)
    return "ok"

# Set logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

# Setup K8 configs
config.load_incluster_config()
def kube_create_job_object(name, container_image, bucket_name, f_name, namespace="pg-ns", container_name="jobcontainer", env_vars={}):

    body = client.V1Job(api_version="batch/v1", kind="Job")
    body.metadata = client.V1ObjectMeta(namespace=namespace, name=name)
    body.status = client.V1JobStatus()

    template = client.V1PodTemplate()
    template.template = client.V1PodTemplateSpec()
    env_list = [
        client.V1EnvVar(name="POSTGRES_HOST", value=os.getenv("POSTGRES_HOST")),
        client.V1EnvVar(name="DATABASE_NAME", value="app"), 
        client.V1EnvVar(name="COLLECTION_NAME", value="training-docs"), 
        client.V1EnvVar(name="FILE_NAME", value=f_name), 
        client.V1EnvVar(name="BUCKET_NAME", value=bucket_name),
        client.V1EnvVar(name="PASSWORD", value_from=client.V1EnvVarSource(secret_key_ref=client.V1SecretKeySelector(key="password", name="gke-pg-cluster-app"))), 
        client.V1EnvVar(name="USERNAME", value_from=client.V1EnvVarSource(secret_key_ref=client.V1SecretKeySelector(key="username", name="gke-pg-cluster-app"))), 
    ]

    container = client.V1Container(name=container_name, image=container_image, image_pull_policy='Always', env=env_list)
    template.template.spec = client.V1PodSpec(containers=[container], restart_policy='Never', service_account='embed-docs-sa')

    body.spec = client.V1JobSpec(backoff_limit=3, ttl_seconds_after_finished=60, template=template.template)
    return body
def kube_test_credentials():
    try: 
        api_response = api_instance.get_api_resources()
        logging.info(api_response)
    except ApiException as e:
        print("Exception when calling API: %s\n" % e)

def kube_create_job(bckt, f_name, id):
    container_image = os.getenv("JOB_IMAGE")
    namespace = os.getenv("JOB_NAMESPACE")
    name = "docs-embedder" + id
    body = kube_create_job_object(name, container_image, bckt, f_name)
    v1=client.BatchV1Api()
    try: 
        v1.create_namespaced_job(namespace, body, pretty=True)
    except ApiException as e:
        print("Exception when calling BatchV1Api->create_namespaced_job: %s\n" % e)
    return

if __name__ == '__main__':
    app.run('0.0.0.0', port=5001, debug=True)

Weaviate

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from flask import Flask, jsonify
from flask import request
import logging
import sys,os, time
from kubernetes import client, config, utils
import kubernetes.client
from kubernetes.client.rest import ApiException


app = Flask(__name__)
@app.route('/check')
def message():
    return jsonify({"Message": "Hi there"})


@app.route('/', methods=['POST'])
def bucket():
    request_data = request.get_json()
    print(request_data)
    bckt = request_data['bucket']
    f_name = request_data['name']
    id = request_data['generation'] 
    kube_create_job(bckt, f_name, id)
    return "ok"

# Set logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

# Setup K8 configs
config.load_incluster_config()
def kube_create_job_object(name, container_image, bucket_name, f_name, namespace, container_name="jobcontainer", env_vars={}):

    body = client.V1Job(api_version="batch/v1", kind="Job")
    body.metadata = client.V1ObjectMeta(namespace=namespace, name=name)
    body.status = client.V1JobStatus()

    template = client.V1PodTemplate()
    template.template = client.V1PodTemplateSpec()
    env_list = [
        client.V1EnvVar(name="WEAVIATE_ENDPOINT", value=os.getenv("WEAVIATE_ENDPOINT")),
        client.V1EnvVar(name="WEAVIATE_GRPC_ENDPOINT", value=os.getenv("WEAVIATE_GRPC_ENDPOINT")),
        client.V1EnvVar(name="FILE_NAME", value=f_name), 
        client.V1EnvVar(name="BUCKET_NAME", value=bucket_name),
        client.V1EnvVar(name="APIKEY", value_from=client.V1EnvVarSource(secret_key_ref=client.V1SecretKeySelector(key="AUTHENTICATION_APIKEY_ALLOWED_KEYS", name="apikeys"))), 
    ]

    container = client.V1Container(name=container_name, image=container_image, image_pull_policy='Always', env=env_list)
    template.template.spec = client.V1PodSpec(containers=[container], restart_policy='Never', service_account='embed-docs-sa')

    body.spec = client.V1JobSpec(backoff_limit=3, ttl_seconds_after_finished=60, template=template.template)
    return body
def kube_test_credentials():
    try: 
        api_response = api_instance.get_api_resources()
        logging.info(api_response)
    except ApiException as e:
        print("Exception when calling API: %s\n" % e)

def kube_create_job(bckt, f_name, id):
    container_image = os.getenv("JOB_IMAGE")
    namespace = os.getenv("JOB_NAMESPACE")
    name = "docs-embedder" + id
    body = kube_create_job_object(name, container_image, bckt, f_name, namespace)
    v1=client.BatchV1Api()
    try: 
        v1.create_namespaced_job(namespace, body, pretty=True)
    except ApiException as e:
        print("Exception when calling BatchV1Api->create_namespaced_job: %s\n" % e)
    return

if __name__ == '__main__':
    app.run('0.0.0.0', port=5001, debug=True)

Über embedding-job.py

Diese Datei verarbeitet Dokumente und sendet sie an die Vektordatenbank.

Qdrant

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from langchain_google_vertexai import ChatVertexAI
from langchain.prompts import ChatPromptTemplate
from langchain_google_vertexai import VertexAIEmbeddings
from langchain.memory import ConversationBufferWindowMemory
from langchain_community.vectorstores import Qdrant
from qdrant_client import QdrantClient
import streamlit as st
import os

vertexAI = ChatVertexAI(model_name="gemini-pro", streaming=True, convert_system_message_to_human=True)
prompt_template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a helpful assistant who helps in finding answers to questions using the provided context."),
        ("human", """
        The answer should be based on the text context given in "text_context" and the conversation history given in "conversation_history" along with its Caption: \n
        Base your response on the provided text context and the current conversation history to answer the query.
        Select the most relevant information from the context.
        Generate a draft response using the selected information. Remove duplicate content from the draft response.
        Generate your final response after adjusting it to increase accuracy and relevance.
        Now only show your final response!
        If you do not know the answer or context is not relevant, response with "I don't know".

        text_context:
        {context}

        conversation_history:
        {history}

        query:
        {query}
        """),
    ]
)

embedding_model = VertexAIEmbeddings("textembedding-gecko@001")

client = QdrantClient(
    url=os.getenv("QDRANT_URL"),
    api_key=os.getenv("APIKEY"),
)
collection_name = os.getenv("COLLECTION_NAME")
vector_search = Qdrant(client, collection_name, embeddings=embedding_model)
def format_docs(docs):
    return "\n\n".join([d.page_content for d in docs])

st.title("🤖 Chatbot")
if "messages" not in st.session_state:
    st.session_state["messages"] = [{"role": "ai", "content": "How can I help you?"}]
if "memory" not in st.session_state:
    st.session_state["memory"] = ConversationBufferWindowMemory(
        memory_key="history",
        ai_prefix="Bob",
        human_prefix="User",
        k=3,
    )
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.write(message["content"])
if chat_input := st.chat_input():
    with st.chat_message("human"):
        st.write(chat_input)
        st.session_state.messages.append({"role": "human", "content": chat_input})

    found_docs = vector_search.similarity_search(chat_input)
    context = format_docs(found_docs)

    prompt_value = prompt_template.format_messages(name="Bob", query=chat_input, context=context, history=st.session_state.memory.load_memory_variables({}))
    with st.chat_message("ai"):
        with st.spinner("Typing..."):
            content = ""
            with st.empty():
                for chunk in vertexAI.stream(prompt_value):
                    content += chunk.content
                    st.write(content)
            st.session_state.messages.append({"role": "ai", "content": content})

    st.session_state.memory.save_context({"input": chat_input}, {"output": content})

Elasticsearch

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from langchain_google_vertexai import VertexAIEmbeddings
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from elasticsearch import Elasticsearch
from langchain_community.vectorstores.elasticsearch import ElasticsearchStore
from google.cloud import storage
import os

bucketname = os.getenv("BUCKET_NAME")
filename = os.getenv("FILE_NAME")

storage_client = storage.Client()
bucket = storage_client.bucket(bucketname)
blob = bucket.blob(filename)
blob.download_to_filename("/documents/" + filename)

loader = PyPDFLoader("/documents/" + filename)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = loader.load_and_split(text_splitter)

embeddings = VertexAIEmbeddings("textembedding-gecko@001")

client = Elasticsearch(
    [os.getenv("ES_URL")], 
    verify_certs=False, 
    ssl_show_warn=False,
    basic_auth=("elastic", os.getenv("PASSWORD"))
)

db = ElasticsearchStore.from_documents(
    documents,
    embeddings,
    es_connection=client,
    index_name=os.getenv("INDEX_NAME")
)
db.client.indices.refresh(index=os.getenv("INDEX_NAME"))

print(filename + " was successfully embedded") 
print(f"# of vectors = {len(documents)}")

PGVector

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from langchain_google_vertexai import VertexAIEmbeddings
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores.pgvector import PGVector
from google.cloud import storage
import os
bucketname = os.getenv("BUCKET_NAME")
filename = os.getenv("FILE_NAME")

storage_client = storage.Client()
bucket = storage_client.bucket(bucketname)
blob = bucket.blob(filename)
blob.download_to_filename("/documents/" + filename)

loader = PyPDFLoader("/documents/" + filename)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = loader.load_and_split(text_splitter)
for document in documents:
    document.page_content = document.page_content.replace('\x00', '')

embeddings = VertexAIEmbeddings("textembedding-gecko@001")

CONNECTION_STRING = PGVector.connection_string_from_db_params(
    driver="psycopg2",
    host=os.environ.get("POSTGRES_HOST"),
    port=5432,
    database=os.environ.get("DATABASE_NAME"),
    user=os.environ.get("USERNAME"),
    password=os.environ.get("PASSWORD"),
)
COLLECTION_NAME = os.environ.get("COLLECTION_NAME")

db = PGVector.from_documents(
    embedding=embeddings,
    documents=documents,
    collection_name=COLLECTION_NAME,
    connection_string=CONNECTION_STRING,
    use_jsonb=True
)

print(filename + " was successfully embedded") 
print(f"# of vectors = {len(documents)}")

Weaviate

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from langchain_google_vertexai import VertexAIEmbeddings
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import weaviate
from weaviate.connect import ConnectionParams
from langchain_weaviate.vectorstores import WeaviateVectorStore
from google.cloud import storage
import os
bucketname = os.getenv("BUCKET_NAME")
filename = os.getenv("FILE_NAME")

storage_client = storage.Client()
bucket = storage_client.bucket(bucketname)
blob = bucket.blob(filename)
blob.download_to_filename("/documents/" + filename)

loader = PyPDFLoader("/documents/" + filename)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = loader.load_and_split(text_splitter)

embeddings = VertexAIEmbeddings("textembedding-gecko@001")

auth_config = weaviate.auth.AuthApiKey(api_key=os.getenv("APIKEY"))
client = weaviate.WeaviateClient(
    connection_params=ConnectionParams.from_params(
        http_host=os.getenv("WEAVIATE_ENDPOINT"),
        http_port="80",
        http_secure=False,
        grpc_host=os.getenv("WEAVIATE_GRPC_ENDPOINT"),
        grpc_port="50051",
        grpc_secure=False,
    ),
    auth_client_secret=auth_config
)
client.connect()
if not client.collections.exists("trainingdocs"):
    collection = client.collections.create(name="trainingdocs")
db = WeaviateVectorStore.from_documents(documents, embeddings, client=client, index_name="trainingdocs")

print(filename + " was successfully embedded") 
print(f"# of vectors = {len(documents)}")

Über chat.py

In dieser Datei wird das Modell so konfiguriert, dass es Fragen nur mit dem bereitgestellten Kontext und den vorherigen Antworten beantwortet. Wenn der Kontext- oder Unterhaltungsverlauf nicht mit Daten übereinstimmt, gibt das Modell I don't know zurück.

Qdrant

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from flask import Flask, jsonify
from flask import request
import logging
import sys,os, time
from kubernetes import client, config, utils
import kubernetes.client
from kubernetes.client.rest import ApiException


app = Flask(__name__)
@app.route('/check')
def message():
    return jsonify({"Message": "Hi there"})


@app.route('/', methods=['POST'])
def bucket():
    request_data = request.get_json()
    print(request_data)
    bckt = request_data['bucket']
    f_name = request_data['name']
    id = request_data['generation'] 
    kube_create_job(bckt, f_name, id)
    return "ok"

# Set logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

# Setup K8 configs
config.load_incluster_config()
def kube_create_job_object(name, container_image, bucket_name, f_name, namespace="qdrant", container_name="jobcontainer", env_vars={}):

    body = client.V1Job(api_version="batch/v1", kind="Job")
    body.metadata = client.V1ObjectMeta(namespace=namespace, name=name)
    body.status = client.V1JobStatus()

    template = client.V1PodTemplate()
    template.template = client.V1PodTemplateSpec()
    env_list = [
        client.V1EnvVar(name="QDRANT_URL", value=os.getenv("QDRANT_URL")),
        client.V1EnvVar(name="COLLECTION_NAME", value="training-docs"), 
        client.V1EnvVar(name="FILE_NAME", value=f_name), 
        client.V1EnvVar(name="BUCKET_NAME", value=bucket_name),
        client.V1EnvVar(name="APIKEY", value_from=client.V1EnvVarSource(secret_key_ref=client.V1SecretKeySelector(key="api-key", name="qdrant-database-apikey"))), 
    ]

    container = client.V1Container(name=container_name, image=container_image, env=env_list)
    template.template.spec = client.V1PodSpec(containers=[container], restart_policy='Never', service_account='embed-docs-sa')

    body.spec = client.V1JobSpec(backoff_limit=3, ttl_seconds_after_finished=60, template=template.template)
    return body
def kube_test_credentials():
    try: 
        api_response = api_instance.get_api_resources()
        logging.info(api_response)
    except ApiException as e:
        print("Exception when calling API: %s\n" % e)

def kube_create_job(bckt, f_name, id):
    container_image = os.getenv("JOB_IMAGE")
    namespace = os.getenv("JOB_NAMESPACE")
    name = "docs-embedder" + id
    body = kube_create_job_object(name, container_image, bckt, f_name)
    v1=client.BatchV1Api()
    try: 
        v1.create_namespaced_job(namespace, body, pretty=True)
    except ApiException as e:
        print("Exception when calling BatchV1Api->create_namespaced_job: %s\n" % e)
    return

if __name__ == '__main__':
    app.run('0.0.0.0', port=5001, debug=True)

Elasticsearch

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from langchain_google_vertexai import ChatVertexAI
from langchain.prompts import ChatPromptTemplate
from langchain_google_vertexai import VertexAIEmbeddings
from langchain.memory import ConversationBufferWindowMemory
from elasticsearch import Elasticsearch
from langchain_community.vectorstores.elasticsearch import ElasticsearchStore
import streamlit as st
import os

vertexAI = ChatVertexAI(model_name="gemini-pro", streaming=True, convert_system_message_to_human=True)
prompt_template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a helpful assistant who helps in finding answers to questions using the provided context."),
        ("human", """
        The answer should be based on the text context given in "text_context" and the conversation history given in "conversation_history" along with its Caption: \n
        Base your response on the provided text context and the current conversation history to answer the query.
        Select the most relevant information from the context.
        Generate a draft response using the selected information. Remove duplicate content from the draft response.
        Generate your final response after adjusting it to increase accuracy and relevance.
        Now only show your final response!
        If you do not know the answer or context is not relevant, response with "I don't know".

        text_context:
        {context}

        conversation_history:
        {history}

        query:
        {query}
        """),
    ]
)

embedding_model = VertexAIEmbeddings("textembedding-gecko@001")

client = Elasticsearch(
    [os.getenv("ES_URL")], 
    verify_certs=False, 
    ssl_show_warn=False,
    basic_auth=("elastic", os.getenv("PASSWORD"))
)
vector_search = ElasticsearchStore(
    index_name=os.getenv("INDEX_NAME"),
    es_connection=client,
    embedding=embedding_model
)

def format_docs(docs):
    return "\n\n".join([d.page_content for d in docs])

st.title("🤖 Chatbot")
if "messages" not in st.session_state:
    st.session_state["messages"] = [{"role": "ai", "content": "How can I help you?"}]

if "memory" not in st.session_state:
    st.session_state["memory"] = ConversationBufferWindowMemory(
        memory_key="history",
        ai_prefix="Bot",
        human_prefix="User",
        k=3,
    )

for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.write(message["content"])

if chat_input := st.chat_input():
    with st.chat_message("human"):
        st.write(chat_input)
        st.session_state.messages.append({"role": "human", "content": chat_input})

    found_docs = vector_search.similarity_search(chat_input)
    context = format_docs(found_docs)

    prompt_value = prompt_template.format_messages(name="Bot", query=chat_input, context=context, history=st.session_state.memory.load_memory_variables({}))
    with st.chat_message("ai"):
        with st.spinner("Typing..."):
            content = ""
            with st.empty():
                for chunk in vertexAI.stream(prompt_value):
                    content += chunk.content
                    st.write(content)
            st.session_state.messages.append({"role": "ai", "content": content})

    st.session_state.memory.save_context({"input": chat_input}, {"output": content})

PGVector

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from langchain_google_vertexai import ChatVertexAI
from langchain.prompts import ChatPromptTemplate
from langchain_google_vertexai import VertexAIEmbeddings
from langchain.memory import ConversationBufferWindowMemory
from langchain_community.vectorstores.pgvector import PGVector
import streamlit as st
import os

vertexAI = ChatVertexAI(model_name="gemini-pro", streaming=True, convert_system_message_to_human=True)
prompt_template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a helpful assistant who helps in finding answers to questions using the provided context."),
        ("human", """
        The answer should be based on the text context given in "text_context" and the conversation history given in "conversation_history" along with its Caption: \n
        Base your response on the provided text context and the current conversation history to answer the query.
        Select the most relevant information from the context.
        Generate a draft response using the selected information. Remove duplicate content from the draft response.
        Generate your final response after adjusting it to increase accuracy and relevance.
        Now only show your final response!
        If you do not know the answer or context is not relevant, response with "I don't know".

        text_context:
        {context}

        conversation_history:
        {history}

        query:
        {query}
        """),
    ]
)

embedding_model = VertexAIEmbeddings("textembedding-gecko@001")

CONNECTION_STRING = PGVector.connection_string_from_db_params(
    driver="psycopg2",
    host=os.environ.get("POSTGRES_HOST"),
    port=5432,
    database=os.environ.get("DATABASE_NAME"),
    user=os.environ.get("USERNAME"),
    password=os.environ.get("PASSWORD"),
)
COLLECTION_NAME = os.environ.get("COLLECTION_NAME"),

vector_search = PGVector(
    collection_name=COLLECTION_NAME,
    connection_string=CONNECTION_STRING,
    embedding_function=embedding_model,
)

def format_docs(docs):
    return "\n\n".join([d.page_content for d in docs])

st.title("🤖 Chatbot")
if "messages" not in st.session_state:
    st.session_state["messages"] = [{"role": "ai", "content": "How can I help you?"}]

if "memory" not in st.session_state:
    st.session_state["memory"] = ConversationBufferWindowMemory(
        memory_key="history",
        ai_prefix="Bot",
        human_prefix="User",
        k=3,
    )

for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.write(message["content"])

if chat_input := st.chat_input():
    with st.chat_message("human"):
        st.write(chat_input)
        st.session_state.messages.append({"role": "human", "content": chat_input})

    found_docs = vector_search.similarity_search(chat_input)
    context = format_docs(found_docs)

    prompt_value = prompt_template.format_messages(name="Bot", query=chat_input, context=context, history=st.session_state.memory.load_memory_variables({}))
    with st.chat_message("ai"):
        with st.spinner("Typing..."):
            content = ""
            with st.empty():
                for chunk in vertexAI.stream(prompt_value):
                    content += chunk.content
                    st.write(content)
            st.session_state.messages.append({"role": "ai", "content": content})

    st.session_state.memory.save_context({"input": chat_input}, {"output": content})

Weaviate

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from langchain_google_vertexai import ChatVertexAI
from langchain.prompts import ChatPromptTemplate
from langchain_google_vertexai import VertexAIEmbeddings
from langchain.memory import ConversationBufferWindowMemory
import weaviate
from weaviate.connect import ConnectionParams
from langchain_weaviate.vectorstores import WeaviateVectorStore
import streamlit as st
import os

vertexAI = ChatVertexAI(model_name="gemini-pro", streaming=True, convert_system_message_to_human=True)
prompt_template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a helpful assistant who helps in finding answers to questions using the provided context."),
        ("human", """
        The answer should be based on the text context given in "text_context" and the conversation history given in "conversation_history" along with its Caption: \n
        Base your response on the provided text context and the current conversation history to answer the query.
        Select the most relevant information from the context.
        Generate a draft response using the selected information. Remove duplicate content from the draft response.
        Generate your final response after adjusting it to increase accuracy and relevance.
        Now only show your final response!
        If you do not know the answer or context is not relevant, response with "I don't know".

        text_context:
        {context}

        conversation_history:
        {history}

        query:
        {query}
        """),
    ]
)

embedding_model = VertexAIEmbeddings("textembedding-gecko@001")

auth_config = weaviate.auth.AuthApiKey(api_key=os.getenv("APIKEY"))
client = weaviate.WeaviateClient(
    connection_params=ConnectionParams.from_params(
        http_host=os.getenv("WEAVIATE_ENDPOINT"),
        http_port="80",
        http_secure=False,
        grpc_host=os.getenv("WEAVIATE_GRPC_ENDPOINT"),
        grpc_port="50051",
        grpc_secure=False,
    ),
    auth_client_secret=auth_config
)
client.connect()

vector_search = WeaviateVectorStore.from_documents([],embedding_model,client=client, index_name="trainingdocs")

def format_docs(docs):
    return "\n\n".join([d.page_content for d in docs])

st.title("🤖 Chatbot")
if "messages" not in st.session_state:
    st.session_state["messages"] = [{"role": "ai", "content": "How can I help you?"}]

if "memory" not in st.session_state:
    st.session_state["memory"] = ConversationBufferWindowMemory(
        memory_key="history",
        ai_prefix="Bot",
        human_prefix="User",
        k=3,
    )

for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.write(message["content"])

if chat_input := st.chat_input():
    with st.chat_message("human"):
        st.write(chat_input)
        st.session_state.messages.append({"role": "human", "content": chat_input})

    found_docs = vector_search.similarity_search(chat_input)
    context = format_docs(found_docs)

    prompt_value = prompt_template.format_messages(name="Bot", query=chat_input, context=context, history=st.session_state.memory.load_memory_variables({}))
    with st.chat_message("ai"):
        with st.spinner("Typing..."):
            content = ""
            with st.empty():
                for chunk in vertexAI.stream(prompt_value):
                    content += chunk.content
                    st.write(content)
            st.session_state.messages.append({"role": "ai", "content": content})

    st.session_state.memory.save_context({"input": chat_input}, {"output": content})

Bereinigen

Damit Ihrem Google Cloud-Konto die in dieser Anleitung verwendeten Ressourcen nicht in Rechnung gestellt werden, löschen Sie entweder das Projekt, das die Ressourcen enthält, oder Sie behalten das Projekt und löschen die einzelnen Ressourcen.

Projekt löschen

Sie vermeiden weitere Kosten am einfachsten, wenn Sie das für die Anleitung erstellte Projekt löschen.

Delete a Google Cloud project:

gcloud projects delete PROJECT_ID

Wenn Sie das Projekt gelöscht haben, ist die Bereinigung abgeschlossen. Wenn Sie das Projekt nicht gelöscht haben, fahren Sie mit dem Löschen der einzelnen Ressourcen fort.

Einzelne Ressourcen löschen

  1. Löschen Sie das Artifact Registry-Repository:

    gcloud artifacts repositories delete ${KUBERNETES_CLUSTER_PREFIX}-images \
        --location=${REGION} \
        --async
    

    Geben Sie bei Aufforderung y ein.

  2. Löschen Sie den Cloud Storage-Bucket und den Eventarc-Trigger:

    export GOOGLE_OAUTH_ACCESS_TOKEN=$(gcloud auth print-access-token)
    terraform -chdir=vector-database/terraform/cloud-storage destroy \
      -var project_id=${PROJECT_ID} \
      -var region=${REGION} \
      -var cluster_prefix=${KUBERNETES_CLUSTER_PREFIX} \
      -var db_namespace=${DB_NAMESPACE}
    

    Geben Sie bei Aufforderung yes ein.

    Für Eventarc ist sowohl beim Erstellen als auch beim Löschen ein gültiges Endpunktziel erforderlich.

Nächste Schritte