Menelusuri embedding dengan penelusuran vektor

Tutorial ini menunjukkan cara menelusuri penyematan yang disimpan di tabel BigQuery menggunakan fungsi VECTOR_SEARCH dan secara opsional indeks vektor.

Izin yang diperlukan

Untuk menjalankan tutorial ini, Anda memerlukan izin Identity and Access Management (IAM) berikut:

  • Untuk membuat set data, Anda memerlukan izin bigquery.datasets.create.
  • Untuk membuat tabel, Anda memerlukan izin berikut:

    • bigquery.tables.create
    • bigquery.tables.updateData
    • bigquery.jobs.create
  • Untuk membuat indeks vektor, Anda memerlukan izin bigquery.tables.createIndex pada tabel tempat Anda membuat indeks.

  • Untuk menghapus indeks vektor, Anda memerlukan izin bigquery.tables.deleteIndex pada tabel tempat Anda menghapus indeks.

Setiap peran IAM bawaan berikut mencakup izin yang Anda perlukan untuk menggunakan indeks vektor:

  • BigQuery Data Owner (roles/bigquery.dataOwner)
  • BigQuery Data Editor (roles/bigquery.dataEditor)

Biaya

Dalam dokumen ini, Anda akan menggunakan komponen Google Cloud yang dapat ditagih berikut: Google Cloud:

  • BigQuery: You incur costs for index storage and data processing in BigQuery.

Untuk membuat perkiraan biaya berdasarkan proyeksi penggunaan Anda, gunakan kalkulator harga. Pengguna Google Cloud baru mungkin memenuhi syarat untuk mendapatkan uji coba gratis.

Untuk informasi lebih lanjut, lihat Harga BigQuery.

Sebelum memulai

  1. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  2. Make sure that billing is enabled for your Google Cloud project.

  3. Enable the BigQuery API.

    Enable the API

Membuat set data

Buat set data BigQuery:

  1. Di konsol Google Cloud , buka halaman BigQuery.

    Buka halaman BigQuery

  2. Di panel Explorer, klik nama project Anda.

  3. Klik View actions > Create dataset.

    Buat set data.

  4. Di halaman Create dataset, lakukan hal berikut:

    • Untuk Dataset ID, masukkan vector_search.

    • Untuk Location type, pilih Multi-region, lalu pilih US (multiple regions in United States).

      Set data publik disimpan di US multi-region. Untuk mempermudah, simpan set data Anda di lokasi yang sama.

    • Jangan ubah setelan default yang tersisa, lalu klik Create dataset.

Membuat tabel pengujian

  1. Buat tabel patents yang berisi penyematan paten, berdasarkan subkumpulan set data publik Google Patents:

    CREATE TABLE vector_search.patents AS
    SELECT * FROM `patents-public-data.google_patents_research.publications`
    WHERE ARRAY_LENGTH(embedding_v1) > 0
     AND publication_number NOT IN ('KR-20180122872-A')
    LIMIT 1000000;
  2. Buat tabel patents2 yang berisi penyematan paten untuk menemukan tetangga terdekat untuk:

    CREATE TABLE vector_search.patents2 AS
    SELECT * FROM `patents-public-data.google_patents_research.publications`
    WHERE publication_number = 'KR-20180122872-A';

Membuat indeks vektor

  1. Buat indeks vektor my_index pada kolom embeddings_v1 di tabel patents:

    CREATE VECTOR INDEX my_index ON vector_search.patents(embedding_v1)
    OPTIONS(distance_type='COSINE', index_type='IVF', ivf_options='{"num_lists": 1000}');
  2. Tunggu beberapa menit hingga indeks vektor dibuat, lalu jalankan kueri berikut dan konfirmasi bahwa nilai coverage_percentage adalah 100:

    SELECT * FROM vector_search.INFORMATION_SCHEMA.VECTOR_INDEXES;

Menggunakan fungsi VECTOR_SEARCH dengan indeks

Setelah indeks vektor dibuat dan diisi, gunakan fungsi VECTOR_SEARCH untuk menemukan tetangga terdekat untuk penyematan di kolom embedding_v1 dalam tabel patents2. Kueri ini menggunakan indeks vektor dalam penelusuran, sehingga VECTOR_SEARCH menggunakan metode Approximate Nearest Neighbor untuk menemukan tetangga terdekat penyematan:

SELECT query.publication_number AS query_publication_number,
  query.title AS query_title,
  base.publication_number AS base_publication_number,
  base.title AS base_title,
  distance
FROM
  VECTOR_SEARCH(
    TABLE vector_search.patents,
    'embedding_v1',
    TABLE vector_search.patents2,
    top_k => 5,
    distance_type => 'COSINE',
    options => '{"fraction_lists_to_search": 0.005}');

Hasilnya akan terlihat seperti berikut:

+--------------------------+-------------------------------------------------------------+-------------------------+--------------------------------------------------------------------------------------------------------------------------+---------------------+
| query_publication_number |                         query_title                         | base_publication_number |                                                        base_title                                                        |      distance       |
+--------------------------+-------------------------------------------------------------+-------------------------+--------------------------------------------------------------------------------------------------------------------------+---------------------+
| KR-20180122872-A         | Rainwater management system based on rainwater keeping unit | CN-106599080-B          | A kind of rapid generation for keeping away big vast transfer figure based on GIS                                        | 0.14471956347590609 |
| KR-20180122872-A         | Rainwater management system based on rainwater keeping unit | CN-114118544-A          | Urban waterlogging detection method and device                                                                           | 0.17472108931171348 |
| KR-20180122872-A         | Rainwater management system based on rainwater keeping unit | KR-20200048143-A        | Method and system for mornitoring dry stream using unmanned aerial vehicle                                               | 0.17561990745619782 |
| KR-20180122872-A         | Rainwater management system based on rainwater keeping unit | KR-101721695-B1         | Urban Climate Impact Assessment method of Reflecting Urban Planning Scenarios and Analysis System using the same         | 0.17696129365559843 |
| KR-20180122872-A         | Rainwater management system based on rainwater keeping unit | CN-109000731-B          | The experimental rig and method that research inlet for stom water chocking-up degree influences water discharged amount | 0.17902723269642917 |
+--------------------------+-------------------------------------------------------------+-------------------------+--------------------------------------------------------------------------------------------------------------------------+---------------------+

Menggunakan fungsi VECTOR_SEARCH dengan brute force

Gunakan fungsi VECTOR_SEARCH untuk menemukan tetangga terdekat untuk penyematan di kolom embedding_v1 dalam tabel patents2. Kueri ini tidak menggunakan indeks vektor dalam penelusuran, sehingga VECTOR_SEARCH menemukan tetangga terdekat yang tepat dari penyematan:

SELECT query.publication_number AS query_publication_number,
  query.title AS query_title,
  base.publication_number AS base_publication_number,
  base.title AS base_title,
  distance
FROM
  VECTOR_SEARCH(
    TABLE vector_search.patents,
    'embedding_v1',
    TABLE vector_search.patents2,
    top_k => 5,
    distance_type => 'COSINE',
    options => '{"use_brute_force":true}');

Hasilnya akan terlihat seperti berikut:

+--------------------------+-------------------------------------------------------------+-------------------------+--------------------------------------------------------------------------------------------------------------------------+---------------------+
| query_publication_number |                         query_title                         | base_publication_number |                                                        base_title                                                        |      distance       |
+--------------------------+-------------------------------------------------------------+-------------------------+--------------------------------------------------------------------------------------------------------------------------+---------------------+
| KR-20180122872-A         | Rainwater management system based on rainwater keeping unit | CN-106599080-B          | A kind of rapid generation for keeping away big vast transfer figure based on GIS                                        |  0.1447195634759062 |
| KR-20180122872-A         | Rainwater management system based on rainwater keeping unit | CN-114118544-A          | Urban waterlogging detection method and device                                                                           |  0.1747210893117136 |
| KR-20180122872-A         | Rainwater management system based on rainwater keeping unit | KR-20200048143-A        | Method and system for mornitoring dry stream using unmanned aerial vehicle                                               | 0.17561990745619782 |
| KR-20180122872-A         | Rainwater management system based on rainwater keeping unit | KR-101721695-B1         | Urban Climate Impact Assessment method of Reflecting Urban Planning Scenarios and Analysis System using the same         | 0.17696129365559843 |
| KR-20180122872-A         | Rainwater management system based on rainwater keeping unit | CN-109000731-B          | The experimental rig and method that research inlet for stom water chocking-up degree influences water discharged amount | 0.17902723269642928 |
+--------------------------+-------------------------------------------------------------+-------------------------+--------------------------------------------------------------------------------------------------------------------------+---------------------+

Mengevaluasi recall

Saat Anda melakukan penelusuran vektor dengan indeks, penelusuran akan menampilkan hasil perkiraan, dengan mengorbankan pengurangan recall. Anda dapat menghitung recall dengan membandingkan hasil yang ditampilkan oleh penelusuran vektor dengan indeks dan dengan penelusuran vektor dengan brute force. Dalam set data ini, nilai publication_number mengidentifikasi paten secara unik, sehingga digunakan untuk perbandingan.

WITH approx_results AS (
  SELECT query.publication_number AS query_publication_number,
    base.publication_number AS base_publication_number
  FROM
    VECTOR_SEARCH(
      TABLE vector_search.patents,
      'embedding_v1',
      TABLE vector_search.patents2,
      top_k => 5,
      distance_type => 'COSINE',
      options => '{"fraction_lists_to_search": 0.005}')
),
  exact_results AS (
  SELECT query.publication_number AS query_publication_number,
    base.publication_number AS base_publication_number
  FROM
    VECTOR_SEARCH(
      TABLE vector_search.patents,
      'embedding_v1',
      TABLE vector_search.patents2,
      top_k => 5,
      distance_type => 'COSINE',
      options => '{"use_brute_force":true}')
)

SELECT
  a.query_publication_number,
  SUM(CASE WHEN a.base_publication_number = e.base_publication_number THEN 1 ELSE 0 END) / 5 AS recall
FROM exact_results e LEFT JOIN approx_results a
  ON e.query_publication_number = a.query_publication_number
GROUP BY a.query_publication_number

Jika recall lebih rendah dari yang Anda inginkan, Anda dapat meningkatkan nilai fraction_lists_to_search, dengan kelemahan latensi dan penggunaan resource yang berpotensi lebih tinggi. Untuk menyesuaikan penelusuran vektor, Anda dapat mencoba beberapa eksekusi VECTOR_SEARCH dengan nilai argumen yang berbeda, menyimpan hasilnya ke tabel, lalu membandingkan hasilnya.

Pembersihan

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.