Semantische Suche und Retrieval Augmented Generation durchführen

In dieser Anleitung wird beschrieben, wie Sie Texteinbettungen erstellen und verwenden, einschließlich Vektorindexe zur Verbesserung der Suchleistung.

In dieser Anleitung werden die folgenden Aufgaben behandelt:

  • Erstellen eines BigQuery ML-Remote-Modells über ein Vertex AI-Einbettungsmodell.
  • Mit dem Remote-Modell und der Funktion ML.GENERATE_EMBEDDING Einbettungen aus Text in einer BigQuery-Tabelle generieren.
  • Vektorindex erstellen, um die Einbettungen zu indexieren.
  • Durch Verwenden der Funktion VECTOR_SEARCH mit den Einbettungen, um nach ähnlichem Text zu suchen
  • Führen Sie RAG (Retrieval Augmented Generation) durch, indem Sie Text mit der Funktion ML.GENERATE_TEXT generieren und Vektorsuchergebnisse verwenden, um die Prompt-Eingabe zu erweitern und die Ergebnisse zu verbessern.

In dieser Anleitung wird die öffentliche BigQuery-Tabelle patents-public-data.google_patents_research.publications verwendet.

Erforderliche Rollen und Berechtigungen

  • Zum Erstellen einer Verbindung benötigen Sie die Mitgliedschaft in der folgenden IAM-Rolle (Identity and Access Management):

    • roles/bigquery.connectionAdmin
  • Zum Erteilen von Berechtigungen für das Dienstkonto der Verbindung benötigen Sie die folgende Berechtigung:

    • resourcemanager.projects.setIamPolicy
  • Die in dieser Anleitung erforderlichen IAM-Berechtigungen für die verbleibenden BigQuery-Vorgänge sind in den folgenden beiden Rollen enthalten:

    • BigQuery-Dateneditor (roles/bigquery.dataEditor), um Modelle, Tabellen und Indexe zu erstellen.
    • BigQuery-Nutzer (roles/bigquery.user), um BigQuery-Jobs auszuführen.

Kosten

In diesem Dokument verwenden Sie die folgenden kostenpflichtigen Komponenten von Google Cloud:

  • BigQuery ML: You incur costs for the data that you process in BigQuery.
  • Vertex AI: You incur costs for calls to the Vertex AI service that's represented by the remote model.

Mit dem Preisrechner können Sie eine Kostenschätzung für Ihre voraussichtliche Nutzung vornehmen. Neuen Google Cloud-Nutzern steht möglicherweise eine kostenlose Testversion zur Verfügung.

Weitere Informationen zu den Preisen von BigQuery finden Sie unter BigQuery: Preise in der BigQuery-Dokumentation.

Weitere Informationen zu den Preisen für Vertex AI finden Sie auf der Seite Vertex AI: Preise.

Hinweise

  1. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  2. Die Abrechnung für das Google Cloud-Projekt muss aktiviert sein.

  3. Enable the BigQuery, BigQuery Connection, and Vertex AI APIs.

    Enable the APIs

Dataset erstellen

Erstellen Sie ein BigQuery-Dataset, um Ihr ML-Modell zu speichern:

  1. Rufen Sie in der Google Cloud Console die Seite „BigQuery“ auf.

    Zur Seite „BigQuery“

  2. Klicken Sie im Bereich Explorer auf den Namen Ihres Projekts.

  3. Klicken Sie auf Aktionen ansehen > Dataset erstellen.

    Dataset erstellen

  4. Führen Sie auf der Seite Dataset erstellen die folgenden Schritte aus:

    • Geben Sie unter Dataset-ID bqml_tutorial ein.

    • Wählen Sie als Standorttyp die Option Mehrere Regionen und dann USA (mehrere Regionen in den USA) aus.

      Die öffentlichen Datasets sind am multiregionalen Standort US gespeichert. Der Einfachheit halber sollten Sie Ihr Dataset am selben Standort speichern.

    • Übernehmen Sie die verbleibenden Standardeinstellungen unverändert und klicken Sie auf Dataset erstellen.

      Seite "Dataset erstellen"

Verbindung herstellen

Erstellen Sie eine Cloud-Ressourcenverbindung und rufen Sie das Dienstkonto der Verbindung ab. Erstellen Sie die Verbindung in demselben Standort wie dem des von Ihnen im vorherigen Schritt erstellten Datasets.

Wählen Sie eine der folgenden Optionen aus:

Console

  1. Rufen Sie die Seite BigQuery auf.

    BigQuery aufrufen

  2. Klicken Sie auf Hinzufügen und dann auf Verbindungen zu externen Datenquellen, um eine Verbindung zu erstellen.

  3. Wählen Sie in der Liste Verbindungstyp die Option Vertex AI-Remote-Modelle, Remote-Funktionen und BigLake (Cloud Resource) aus.

  4. Geben Sie im Feld Verbindungs-ID einen Namen für die Verbindung ein.

  5. Klicken Sie auf Verbindung erstellen.

  6. Klicken Sie auf Zur Verbindung.

  7. Kopieren Sie im Bereich Verbindungsinformationen die Dienstkonto-ID zur Verwendung in einem späteren Schritt.

bq

  1. Erstellen Sie in einer Befehlszeilenumgebung eine Verbindung:

    bq mk --connection --location=REGION --project_id=PROJECT_ID \
        --connection_type=CLOUD_RESOURCE CONNECTION_ID
    

    Der Parameter --project_id überschreibt das Standardprojekt.

    Ersetzen Sie Folgendes:

    • REGION: Ihre Verbindungsregion
    • PROJECT_ID: Ihre Google Cloud-Projekt-ID
    • CONNECTION_ID: eine ID für Ihre Verbindung

    Wenn Sie eine Verbindungsressource herstellen, erstellt BigQuery ein eindeutiges Systemdienstkonto und ordnet es der Verbindung zu.

    Fehlerbehebung:Wird der folgende Verbindungsfehler angezeigt, aktualisieren Sie das Google Cloud SDK:

    Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
    
  2. Rufen Sie die Dienstkonto-ID ab und kopieren Sie sie zur Verwendung in einem späteren Schritt:

    bq show --connection PROJECT_ID.REGION.CONNECTION_ID
    

    Die Ausgabe sieht in etwa so aus:

    name                          properties
    1234.REGION.CONNECTION_ID     {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
    

Terraform

Hängen Sie folgenden Abschnitt an Ihre main.tf-Datei an.

 ## This creates a cloud resource connection.
 ## Note: The cloud resource nested object has only one output only field - serviceAccountId.
 resource "google_bigquery_connection" "connection" {
    connection_id = "CONNECTION_ID"
    project = "PROJECT_ID"
    location = "REGION"
    cloud_resource {}
}        
Ersetzen Sie Folgendes:

  • CONNECTION_ID: eine ID für Ihre Verbindung
  • PROJECT_ID: Ihre Google Cloud-Projekt-ID
  • REGION: Ihre Verbindungsregion

Dienstkonto Zugriff gewähren

Weisen Sie dem Dienstkonto der Verbindung die Rolle „Vertex AI-Nutzer“ zu. Sie müssen diese Rolle in dem Projekt zuweisen, das Sie im Abschnitt Vorbereitung erstellt oder ausgewählt haben. Die Zuweisung der Rolle in einem anderen Projekt führt zu dem Fehler bqcx-1234567890-xxxx@gcp-sa-bigquery-condel.iam.gserviceaccount.com does not have the permission to access resource.

So weisen Sie die Rolle zu:

  1. Zur Seite IAM & Verwaltung.

    IAM & Verwaltung aufrufen

  2. Klicken Sie auf Zugriff gewähren.

  3. Geben Sie im Feld Neue Hauptkonten die Dienstkonto-ID ein, die Sie zuvor kopiert haben.

  4. Wählen Sie im Feld Rolle auswählen die Option Vertex AI und dann Vertex AI-Nutzerrolle aus.

  5. Klicken Sie auf Speichern.

Remote-Modell für die Generierung von Texteinbettungen erstellen

Erstellen Sie ein Remote-Modell, das ein gehostetes Vertex AI-Modell zur Generierung von Texteinbettungen darstellt:

  1. Öffnen Sie in der Google Cloud Console die Seite BigQuery.

    BigQuery aufrufen

  2. Führen Sie im Abfrageeditor folgende Abfrage aus:

    CREATE OR REPLACE MODEL `bqml_tutorial.embedding_model`
      REMOTE WITH CONNECTION `LOCATION.CONNECTION_ID`
      OPTIONS (ENDPOINT = 'text-embedding-004');
    

    Ersetzen Sie Folgendes:

    • LOCATION: Standort der Verbindung
    • CONNECTION_ID: ID Ihrer BigQuery-Verbindung

      Wenn Sie sich Verbindungsdetails in der Google Cloud Console ansehen, ist die Verbindungs-ID der Wert CONNECTION_ID im letzten Abschnitt der voll qualifizierten Verbindungs-ID, der unter Verbindungs-ID angezeigt wird, z. B. projects/myproject/locations/connection_location/connections/myconnection

    Die Abfrage dauert mehrere Sekunden. Anschließend wird das Modell embedding_model im bqml_tutorial-Dataset des Bereichs Explorer angezeigt. Da die Abfrage eine CREATE MODEL-Anweisung zum Erstellen eines Modells verwendet, gibt es keine Abfrageergebnisse.

Texteinbettungen generieren

Generieren Sie mit der Funktion ML.GENERATE_EMBEDDING Texteinbettungen aus Patentabstrakten und schreiben Sie sie dann in eine BigQuery-Tabelle, damit sie durchsucht werden können.

  1. Öffnen Sie in der Google Cloud Console die Seite BigQuery.

    BigQuery aufrufen

  2. Führen Sie im Abfrageeditor folgende Abfrage aus:

    CREATE OR REPLACE TABLE `bqml_tutorial.embeddings` AS
    SELECT * FROM ML.GENERATE_EMBEDDING(
      MODEL `bqml_tutorial.embedding_model`,
      (
        SELECT *, abstract AS content
        FROM `patents-public-data.google_patents_research.publications`
        WHERE LENGTH(abstract) > 0 AND LENGTH(title) > 0 AND country = 'Singapore'
      )
    )
    WHERE LENGTH(ml_generate_embedding_status) = 0;
    

Die Generierung von Einbettungen mit der Funktion ML.GENERATE_EMBEDDING kann aufgrund von Kontingenten für Vertex AI LLM oder der Nichtverfügbarkeit von Diensten fehlschlagen. Fehlerdetails werden in der Spalte ml_generate_embedding_status zurückgegeben. Eine leere Spalte ml_generate_embedding_status zeigt die erfolgreiche Generierung der Einbettung an.

Alternative Methoden zur Generierung von Texteinbettungen in BigQuery finden Sie in der Anleitung zum Einbetten von Text mit vortrainierten TensorFlow-Modellen.

Vektorindex erstellen

Verwenden Sie zum Erstellen eines Vektorindex die Datendefinitionssprachen-Anweisung (DDL) CREATE VECTOR INDEX:

  1. Rufen Sie die Seite BigQuery auf.

    BigQuery aufrufen

  2. Führen Sie im Abfrageeditor folgende SQL-Anweisung aus:

    CREATE OR REPLACE VECTOR INDEX my_index
    ON `bqml_tutorial.embeddings`(ml_generate_embedding_result)
    OPTIONS(index_type = 'IVF',
      distance_type = 'COSINE',
      ivf_options = '{"num_lists":500}')
    

Erstellen des Vektorindex prüfen

Der Vektorindex wird asynchron ausgefüllt. Sie können prüfen, ob der Index für die Verwendung bereit ist, indem Sie die INFORMATION_SCHEMA.VECTOR_INDEXES-Ansicht abfragen und prüfen, ob coverage_percentage Spaltenwert größer als 0 und last_refresh_time Spaltenwert ist nicht NULL

  1. Rufen Sie die Seite BigQuery auf.

    BigQuery aufrufen

  2. Führen Sie im Abfrageeditor folgende SQL-Anweisung aus:

    SELECT table_name, index_name, index_status,
    coverage_percentage, last_refresh_time, disable_reason
    FROM `PROJECT_ID.bqml_tutorial.INFORMATION_SCHEMA.VECTOR_INDEXES`
    

    Ersetzen Sie PROJECT_ID durch Ihre Projekt-ID.

Mit dem Vektorindex eine Suche nach Textähnlichkeiten durchführen

Mit der Funktion VECTOR_SEARCH können Sie nach den fünf wichtigsten Patenten suchen, die mit aus einer Textabfrage generierten Einbettungen übereinstimmen. Das Modell, mit dem Sie die Einbettungen in dieser Abfrage erstellen, muss mit dem Modell übereinstimmen, das Sie zum Erzeugen der Einbettungen in der Tabelle verwenden, mit der Sie vergleichen. Andernfalls erhalten Sie ungenaue Suchergebnisse.

  1. Rufen Sie die Seite BigQuery auf.

    BigQuery aufrufen

  2. Führen Sie im Abfrageeditor folgende SQL-Anweisung aus:

    SELECT query.query, base.publication_number, base.title, base.abstract
    FROM VECTOR_SEARCH(
      TABLE `bqml_tutorial.embeddings`, 'ml_generate_embedding_result',
      (
      SELECT ml_generate_embedding_result, content AS query
      FROM ML.GENERATE_EMBEDDING(
      MODEL `bqml_tutorial.embedding_model`,
      (SELECT 'improving password security' AS content))
      ),
      top_k => 5, options => '{"fraction_lists_to_search": 0.01}')
    

    Die Ausgabe sieht in etwa so aus:

    +-----------------------------+--------------------+-------------------------------------------------+-------------------------------------------------+
    |            query            | publication_number |                       title                     |                      abstract                   |
    +-----------------------------+--------------------+-------------------------------------------------+-------------------------------------------------+
    | improving password security | SG-120868-A1       | Data storage device security method and a...    | Methods for improving security in data stora... |
    | improving password security | SG-10201610585W-A  | Passsword management system and process...      | PASSSWORD MANAGEMENT SYSTEM AND PROCESS ...     |
    | improving password security | SG-148888-A1       | Improved system and method for...               | IMPROVED SYSTEM AND METHOD FOR RANDOM...        |
    | improving password security | SG-194267-A1       | Method and system for protecting a password...  | A system for providing security for a...        |
    | improving password security | SG-120868-A1       | Data storage device security...                 | Methods for improving security in data...       |
    +-----------------------------+--------------------+-------------------------------------------------+-------------------------------------------------+
    

Remote-Modell für die Textgenerierung erstellen

Erstellen Sie ein Remote-Modell, das ein gehostetes Vertex AI-Textgenerierungsmodell darstellt:

  1. Öffnen Sie in der Google Cloud Console die Seite BigQuery.

    BigQuery aufrufen

  2. Führen Sie im Abfrageeditor folgende Abfrage aus:

    CREATE OR REPLACE MODEL `bqml_tutorial.text_model`
      REMOTE WITH CONNECTION `LOCATION.CONNECTION_ID`
      OPTIONS (ENDPOINT = 'text-bison-32k');
    

    Ersetzen Sie Folgendes:

    • LOCATION: Standort der Verbindung
    • CONNECTION_ID: ID Ihrer BigQuery-Verbindung

      Wenn Sie sich Verbindungsdetails in der Google Cloud Console ansehen, ist die Verbindungs-ID der Wert CONNECTION_ID im letzten Abschnitt der voll qualifizierten Verbindungs-ID, der unter Verbindungs-ID angezeigt wird, z. B. projects/myproject/locations/connection_location/connections/myconnection

    Die Abfrage dauert mehrere Sekunden. Anschließend wird das Modell text_model im bqml_tutorial-Dataset des Bereichs Explorer angezeigt. Da die Abfrage eine CREATE MODEL-Anweisung zum Erstellen eines Modells verwendet, gibt es keine Abfrageergebnisse.

Durch Vektorsuchergebnisse erweiterten Text generieren

Geben Sie die Suchergebnisse als Aufforderungen ein, um Text mit der Funktion ML.GENERATE_TEXT zu generieren.

  1. Öffnen Sie in der Google Cloud Console die Seite BigQuery.

    BigQuery aufrufen

  2. Führen Sie im Abfrageeditor folgende Abfrage aus:

    SELECT ml_generate_text_llm_result AS generated, prompt
    FROM ML.GENERATE_TEXT(
      MODEL `bqml_tutorial.text_model`,
      (
        SELECT CONCAT(
          'Propose some project ideas to improve user password security using the context below: ',
          STRING_AGG(
            FORMAT("patent title: %s, patent abstract: %s", base.title, base.abstract),
            ',\n')
          ) AS prompt,
        FROM VECTOR_SEARCH(
          TABLE `bqml_tutorial.embeddings`, 'ml_generate_embedding_result',
          (
            SELECT ml_generate_embedding_result, content AS query
            FROM ML.GENERATE_EMBEDDING(
              MODEL `bqml_tutorial.embedding_model`,
             (SELECT 'improving password security' AS content)
            )
          ),
        top_k => 5, options => '{"fraction_lists_to_search": 0.01}')
      ),
      STRUCT(600 AS max_output_tokens, TRUE AS flatten_json_output));
    

    Die Ausgabe sieht in etwa so aus:

    +------------------------------------------------+------------------------------------------------------------+
    |            generated                           | prompt                                                     |
    +------------------------------------------------+------------------------------------------------------------+
    | **Project Ideas to Improve User Password       | Propose some project ideas to improve user password        |
    | Security**                                     | security using the context below: patent title: Active     |
    |                                                | new password entry dialog with compact visual indication   |
    | 1. **Develop a password manager that uses      | of adherence to password policy, patent abstract:          |
    | visual clues to indicate password strength.**  | An active new password entry dialog provides a compact     |
    | This could be done by using a color-coded...   | visual indication of adherence to password policies. A     |
    | 2. **Create a system that generates random     | visual indication of progress towards meeting all          |
    | passwords for users.** This would help to      | applicable password policies is included in the display    |
    | ensure that users are not using easily...      | and updated as new password characters are being...        |
    +------------------------------------------------+------------------------------------------------------------+
     

Bereinigen

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.