Comprendere il testo con la funzione ML.underSTAND_TEXT

Questo documento descrive come utilizzare Funzione ML.UNDERSTAND_TEXT con un modello remoto eseguire una funzione di analisi del testo in linguaggio naturale sul testo Tabella standard BigQuery.

Per informazioni sull'inferenza del modello in BigQuery ML, consulta Panoramica dell'inferenza del modello.

Per informazioni sui tipi di modelli supportati per ogni istruzione e funzione SQL, e tutte le istruzioni e le funzioni SQL supportate per ogni tipo di modello, Percorso dell'utente end-to-end per ogni modello.

Autorizzazioni obbligatorie

  • Per creare una connessione, devi avere l'appartenenza al seguente ruolo:

    • roles/bigquery.connectionAdmin
  • Per concedere le autorizzazioni all'account di servizio della connessione, devi disporre della seguente autorizzazione:

    • resourcemanager.projects.setIamPolicy
  • Per creare il modello utilizzando BigQuery ML, è necessario quanto segue autorizzazioni:

    • bigquery.jobs.create
    • bigquery.models.create
    • bigquery.models.getData
    • bigquery.models.updateData
    • bigquery.models.updateMetadata
  • Per eseguire l'inferenza, devi disporre delle seguenti autorizzazioni:

    • bigquery.tables.getData sul tavolo
    • bigquery.models.getData sul modello
    • bigquery.jobs.create

Prima di iniziare

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the BigQuery, BigQuery Connection API, and Cloud Natural Language API APIs.

    Enable the APIs

  5. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  6. Make sure that billing is enabled for your Google Cloud project.

  7. Enable the BigQuery, BigQuery Connection API, and Cloud Natural Language API APIs.

    Enable the APIs

Crea una connessione

Crea una connessione della risorsa cloud e recupera l'account di servizio della connessione.

Seleziona una delle seguenti opzioni:

Console

  1. Vai alla pagina BigQuery.

    Vai a BigQuery

  2. Per creare una connessione, fai clic su Aggiungi e poi su Connessioni a origini dati esterne.

  3. Nell'elenco Tipo di connessione, seleziona Modelli remoti di Vertex AI, funzioni remote e BigLake (risorsa Cloud).

  4. Nel campo ID connessione, inserisci un nome per la connessione.

  5. Fai clic su Crea connessione.

  6. Fai clic su Vai alla connessione.

  7. Nel riquadro Informazioni sulla connessione, copia l'ID account di servizio da utilizzare in un passaggio successivo.

bq

  1. In un ambiente a riga di comando, crea una connessione:

    bq mk --connection --location=REGION --project_id=PROJECT_ID \
        --connection_type=CLOUD_RESOURCE CONNECTION_ID

    Il parametro --project_id sostituisce il progetto predefinito.

    Sostituisci quanto segue:

    • REGION: la regione di connessione
    • PROJECT_ID: il tuo ID progetto Google Cloud
    • CONNECTION_ID: un ID per la connessione

    Quando crei una risorsa di connessione, BigQuery crea un account di servizio di sistema unico e lo associa alla connessione.

    Risoluzione dei problemi: se ricevi il seguente errore di connessione, Aggiorna Google Cloud SDK:

    Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
    
  2. Recupera e copia l'ID account di servizio per utilizzarlo in un secondo momento passaggio:

    bq show --connection PROJECT_ID.REGION.CONNECTION_ID

    L'output è simile al seguente:

    name                          properties
    1234.REGION.CONNECTION_ID     {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
    

Terraform

Aggiungi la seguente sezione al tuo file main.tf.

 ## This creates a cloud resource connection.
 ## Note: The cloud resource nested object has only one output only field - serviceAccountId.
 resource "google_bigquery_connection" "connection" {
    connection_id = "CONNECTION_ID"
    project = "PROJECT_ID"
    location = "REGION"
    cloud_resource {}
}        
Sostituisci quanto segue:

  • CONNECTION_ID: un ID per la connessione
  • PROJECT_ID: il tuo ID progetto Google Cloud
  • REGION: il tuo regione di connessione

Concedi l'accesso all'account di servizio

Seleziona una delle seguenti opzioni:

Console

  1. Vai alla sezione IAM e Console di amministrazione.

    Vai a IAM e amministrazione

  2. Fai clic su Aggiungi.

    Viene visualizzata la finestra di dialogo Aggiungi entità.

  3. Nel campo Nuove entità, inserisci l'ID account di servizio che copiato in precedenza.

  4. Nel campo Seleziona un ruolo, seleziona Utilizzo del servizio, quindi Seleziona Service Usage Consumer (Consumatore utilizzo dei servizi).

  5. Fai clic su Aggiungi un altro ruolo.

  6. Nel campo Seleziona un ruolo, seleziona BigQuery e poi Seleziona Utente connessione BigQuery.

  7. Fai clic su Salva.

gcloud

Utilizza la Comando gcloud projects add-iam-policy-binding:

gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/serviceusage.serviceUsageConsumer' --condition=None
gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/bigquery.connectionUser' --condition=None

Sostituisci quanto segue:

  • PROJECT_NUMBER: il numero del progetto.
  • MEMBER: l'ID dell'account di servizio che copiato in precedenza.

La mancata concessione dell'autorizzazione comporta un errore.

crea un modello

Crea un modello remoto con REMOTE_SERVICE_TYPE di CLOUD_AI_NATURAL_LANGUAGE_V1:

CREATE OR REPLACE MODEL
`PROJECT_ID.DATASET_ID.MODEL_NAME`
REMOTE WITH CONNECTION PROJECT_ID.REGION.CONNECTION_ID
OPTIONS (REMOTE_SERVICE_TYPE = 'CLOUD_AI_NATURAL_LANGUAGE_V1');

Sostituisci quanto segue:

  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che deve contenere il modello. Questo set di dati deve trovarsi nella stessa località della connessione che stai utilizzando.
  • MODEL_NAME: il nome del modello.
  • REGION: la regione utilizzata dalla connessione.
  • CONNECTION_ID: l'ID connessione, ad esempio myconnection.

    Quando visualizzi i dettagli della connessione nella console Google Cloud, l'ID connessione è il valore riportato nell'ultima sezione ID connessione completo mostrato in ID connessione, ad esempio projects/myproject/locations/connection_location/connections/myconnection.

Comprendere il testo

Comprendi il testo con la funzione ML.UNDERSTAND_TEXT:

SELECT *
FROM ML.UNDERSTAND_TEXT(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  { TABLE PROJECT_ID.DATASET_ID.TABLE_NAME | (QUERY) },
  STRUCT('FEATURE_NAME' AS nlu_option)
);

Sostituisci quanto segue:

  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che contiene il modello.
  • MODEL_NAME: il nome del modello.
  • TABLE_NAME: il nome della tabella che contiene il testo da analizzare in una colonna denominata text_content. Se il testo si trova in una colonna con un nome diverso, specifica text_content come alias per la colonna.
  • QUERY: una query contenente il testo da descrivere in una colonna denominata text_content. Se il testo si trova in una colonna con un altro nome, specifica text_content come alias per quella colonna.
  • FEATURE_NAME: il nome di un partner supportato Funzionalità dell'API Natural Language.

Esempio 1

Il seguente esempio esamina il testo nella colonna text_content della tabella e identifica l'opinione emotiva prevalente al suo interno:

SELECT * FROM ML.UNDERSTAND_TEXT(
  MODEL `mydataset.mynlpmodel`,
  TABLE mydataset.mytable,
  STRUCT('analyze_sentiment' AS nlu_option)
);

Esempio 2

L'esempio seguente esamina il testo nella colonna comment della tabella e fornisce informazioni sintattiche sul testo:

SELECT * FROM ML.UNDERSTAND_TEXT(
  MODEL `mydataset.mynlpmodel`,
  (SELECT comment AS text_content from mydataset.mytable),
  STRUCT('analyze_syntax' AS nlu_option)
);

Passaggi successivi

Prova la Analisi dei dati non strutturati con BigQuery ML e Blocco note dei modelli preaddestrati Vertex AI.