Feinabstimmung und Bewertung verwenden, um die Modelleistung zu verbessern
In dieser Anleitung wird gezeigt, wie Sie ein BigQuery ML-Remote-Modell erstellen, das auf ein Vertex AI-gemini-1.5-flash-002
-Modell verweist.
Anschließend verwenden Sie
Überwachte Abstimmung um das Modell mit neuen Trainingsdaten zu optimieren, gefolgt von der Bewertung des Modells mit der ML.EVALUATE
Funktion “
Die Tuning-Funktion kann Ihnen bei der Behebung von Szenarien helfen, in denen Sie das gehostete Vertex AI-Modell anpassen müssen, z. B. wenn das erwartete Verhalten des Modells schwierig zu definieren ist in einem Prompt oder wenn Prompts nicht die erwarteten Ergebnisse generieren, d. h. Ergebnisse, die konsistent genug sind. Die überwachte Abstimmung wirkt sich auch so auf das Modell aus:
- Leitet das Modell so, dass bestimmte Antwortstile zurückgegeben werden, z. B. mit prägnanteren oder ausführlicheren Antworten.
- Bringt dem Modell neue Verhaltensweisen bei, z. B. das Beantworten von Prompts als eine bestimmte Persona.
- Das Modell wird mit neuen Informationen aktualisiert.
In dieser Anleitung soll das Modell Text generieren, dessen Stil und Inhalt so nah wie möglich an den bereitgestellten Grundwahrheitsinhalten liegen.
Erforderliche Berechtigungen
Zum Erstellen einer Verbindung benötigen Sie die folgende Rolle der Identitäts- und Zugriffsverwaltung (Identity and Access Management, IAM):
roles/bigquery.connectionAdmin
Zum Erteilen von Berechtigungen für das Dienstkonto der Verbindung benötigen Sie die folgende Berechtigung:
resourcemanager.projects.setIamPolicy
Zum Erstellen des Modells mit BigQuery ML benötigen Sie die folgenden IAM-Berechtigungen:
bigquery.jobs.create
bigquery.models.create
bigquery.models.getData
bigquery.models.updateData
bigquery.models.updateMetadata
Zum Ausführen von Inferenzen benötigen Sie die folgenden Berechtigungen:
bigquery.tables.getData
für die Tabellebigquery.models.getData
für das Modellbigquery.jobs.create
Hinweise
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery, BigQuery Connection, Vertex AI, and Compute Engine APIs.
Kosten
In diesem Dokument verwenden Sie die folgenden kostenpflichtigen Komponenten von Google Cloud:
- BigQuery: You incur costs for the queries that you run in BigQuery.
- BigQuery ML: You incur costs for the model that you create and the processing that you perform in BigQuery ML.
- Vertex AI: You incur costs for calls to and
supervised tuning of the
gemini-1.0-flash-002
model.
Mit dem Preisrechner können Sie eine Kostenschätzung für Ihre voraussichtliche Nutzung vornehmen.
Weitere Informationen finden Sie in den folgenden Ressourcen:
Dataset erstellen
Erstellen Sie ein BigQuery-Dataset, um Ihr ML-Modell zu speichern:
Rufen Sie in der Google Cloud Console die Seite „BigQuery“ auf.
Klicken Sie im Bereich Explorer auf den Namen Ihres Projekts.
Klicken Sie auf
Aktionen ansehen > Dataset erstellen.Führen Sie auf der Seite Dataset erstellen die folgenden Schritte aus:
Geben Sie unter Dataset-ID
bqml_tutorial
ein.Wählen Sie als Standorttyp die Option Mehrere Regionen und dann USA (mehrere Regionen in den USA) aus.
Die öffentlichen Datasets sind am multiregionalen Standort
US
gespeichert. Der Einfachheit halber sollten Sie Ihr Dataset am selben Standort speichern.Übernehmen Sie die verbleibenden Standardeinstellungen unverändert und klicken Sie auf Dataset erstellen.
Verbindung herstellen
Erstellen Sie eine Cloud-Ressourcenverbindung und rufen Sie die Dienstkonto-ID der Verbindung ab. Erstellen Sie die Verbindung in demselben Standort wie dem des von Ihnen im vorherigen Schritt erstellten Datasets.
Wählen Sie eine der folgenden Optionen aus:
Console
Rufen Sie die Seite BigQuery auf.
Klicken Sie auf
Hinzufügen und dann auf Verbindungen zu externen Datenquellen, um eine Verbindung zu erstellen.Wählen Sie in der Liste Verbindungstyp die Option Vertex AI-Remote-Modelle, Remote-Funktionen und BigLake (Cloud Resource) aus.
Geben Sie im Feld Verbindungs-ID einen Namen für die Verbindung ein.
Klicken Sie auf Verbindung erstellen.
Klicken Sie auf Zur Verbindung.
Kopieren Sie im Bereich Verbindungsinformationen die Dienstkonto-ID zur Verwendung in einem späteren Schritt.
bq
Erstellen Sie in einer Befehlszeilenumgebung eine Verbindung:
bq mk --connection --location=REGION --project_id=PROJECT_ID \ --connection_type=CLOUD_RESOURCE CONNECTION_ID
Der Parameter
--project_id
überschreibt das Standardprojekt.Ersetzen Sie dabei Folgendes:
REGION
: Ihre VerbindungsregionPROJECT_ID
: Ihre Google Cloud -Projekt-IDCONNECTION_ID
: eine ID für Ihre Verbindung
Wenn Sie eine Verbindungsressource herstellen, erstellt BigQuery ein eindeutiges Systemdienstkonto und ordnet es der Verbindung zu.
Fehlerbehebung:Wird der folgende Verbindungsfehler angezeigt, aktualisieren Sie das Google Cloud SDK:
Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
Rufen Sie die Dienstkonto-ID ab und kopieren Sie sie zur Verwendung in einem späteren Schritt:
bq show --connection PROJECT_ID.REGION.CONNECTION_ID
Die Ausgabe sieht in etwa so aus:
name properties 1234.REGION.CONNECTION_ID {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
Terraform
Verwenden Sie die Ressource google_bigquery_connection
:
Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.
Im folgenden Beispiel wird eine Cloud-Ressourcenverbindung mit dem Namen my_cloud_resource_connection
in der Region US
erstellt:
Führen Sie die Schritte in den folgenden Abschnitten aus, um Ihre Terraform-Konfiguration auf ein Google Cloud -Projekt anzuwenden.
Cloud Shell vorbereiten
- Rufen Sie Cloud Shell auf.
-
Legen Sie das Standardprojekt Google Cloud fest, auf das Sie Ihre Terraform-Konfigurationen anwenden möchten.
Sie müssen diesen Befehl nur einmal pro Projekt und in jedem beliebigen Verzeichnis ausführen.
export GOOGLE_CLOUD_PROJECT=PROJECT_ID
Umgebungsvariablen werden überschrieben, wenn Sie in der Terraform-Konfigurationsdatei explizite Werte festlegen.
Verzeichnis vorbereiten
Jede Terraform-Konfigurationsdatei muss ein eigenes Verzeichnis haben (auch als Stammmodul bezeichnet).
-
Erstellen Sie in Cloud Shell ein Verzeichnis und eine neue Datei in diesem Verzeichnis. Der Dateiname muss die Erweiterung
.tf
haben, z. B.main.tf
. In dieser Anleitung wird die Datei alsmain.tf
bezeichnet.mkdir DIRECTORY && cd DIRECTORY && touch main.tf
-
Wenn Sie einer Anleitung folgen, können Sie den Beispielcode in jedem Abschnitt oder Schritt kopieren.
Kopieren Sie den Beispielcode in das neu erstellte
main.tf
.Kopieren Sie optional den Code aus GitHub. Dies wird empfohlen, wenn das Terraform-Snippet Teil einer End-to-End-Lösung ist.
- Prüfen und ändern Sie die Beispielparameter, die auf Ihre Umgebung angewendet werden sollen.
- Speichern Sie die Änderungen.
-
Initialisieren Sie Terraform. Dies ist nur einmal für jedes Verzeichnis erforderlich.
terraform init
Fügen Sie optional die Option
-upgrade
ein, um die neueste Google-Anbieterversion zu verwenden:terraform init -upgrade
Änderungen anwenden
-
Prüfen Sie die Konfiguration und prüfen Sie, ob die Ressourcen, die Terraform erstellen oder aktualisieren wird, Ihren Erwartungen entsprechen:
terraform plan
Korrigieren Sie die Konfiguration nach Bedarf.
-
Wenden Sie die Terraform-Konfiguration an. Führen Sie dazu den folgenden Befehl aus und geben Sie
yes
an der Eingabeaufforderung ein:terraform apply
Warten Sie, bis Terraform die Meldung „Apply complete“ anzeigt.
- Öffnen Sie Ihr Google Cloud -Projekt, um die Ergebnisse aufzurufen. Rufen Sie in der Google Cloud Console Ihre Ressourcen in der Benutzeroberfläche auf, um sicherzustellen, dass Terraform sie erstellt oder aktualisiert hat.
Dem Dienstkonto der Verbindung Zugriff gewähren
Gewähren Sie Ihrem Dienstkonto die Rolle „Vertex AI Service Agent“, damit das Dienstkonto auf Vertex AI zugreifen kann. Fehlschlag beim Gewähren dieser Rolle führt zu einem Fehler. Wählen Sie eine der folgenden Optionen aus:
Console
Zur Seite IAM & Verwaltung.
Klicken Sie auf
Zugriff erlauben.Das Dialogfeld Principals hinzufügen wird geöffnet.
Geben Sie im Feld Neue Hauptkonten die Dienstkonto-ID ein, die Sie zuvor kopiert haben.
Klicken Sie auf Rolle auswählen.
Geben Sie unter Filter
Vertex AI Service Agent
ein und wählen Sie diese Rolle aus.Klicken Sie auf Speichern.
gcloud
Führen Sie den Befehl gcloud projects add-iam-policy-binding
aus:
gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/aiplatform.serviceAgent' --condition=None
Ersetzen Sie Folgendes:
PROJECT_NUMBER
: Ihre ProjektnummerMEMBER
: Die Dienstkonto-ID, die Sie zuvor kopiert haben
Das mit Ihrer Verbindung verknüpfte Dienstkonto ist eine Instanz des Dienst-Agent für BigQuery Connection Delegation, daher ist es akzeptabel, ihm eine Dienst-Agent-Rolle zuzuweisen.
Testtabellen erstellen
Erstellen Sie Tabellen mit Trainings- und Bewertungsdaten basierend auf dem öffentlichen Dataset task955_wiki_auto_style_transfer von Hugging Face.
Öffnen Sie Cloud Shell.
Führen Sie in Cloud Shell die folgenden Befehle aus, um Tabellen mit Test- und Bewertungsdaten zu erstellen:
python3 -m pip install pandas pyarrow fsspec huggingface_hub python3 -c "import pandas as pd; df_train = pd.read_parquet('hf://datasets/Lots-of-LoRAs/task955_wiki_auto_style_transfer/data/train-00000-of-00001.parquet').drop('id', axis=1); df_train['output'] = [x[0] for x in df_train['output']]; df_train.to_json('wiki_auto_style_transfer_train.jsonl', orient='records', lines=True);" python3 -c "import pandas as pd; df_valid = pd.read_parquet('hf://datasets/Lots-of-LoRAs/task955_wiki_auto_style_transfer/data/valid-00000-of-00001.parquet').drop('id', axis=1); df_valid['output'] = [x[0] for x in df_valid['output']]; df_valid.to_json('wiki_auto_style_transfer_valid.jsonl', orient='records', lines=True);" bq rm -t bqml_tutorial.wiki_auto_style_transfer_train bq rm -t bqml_tutorial.wiki_auto_style_transfer_valid bq load --source_format=NEWLINE_DELIMITED_JSON bqml_tutorial.wiki_auto_style_transfer_train wiki_auto_style_transfer_train.jsonl input:STRING,output:STRING bq load --source_format=NEWLINE_DELIMITED_JSON bqml_tutorial.wiki_auto_style_transfer_valid wiki_auto_style_transfer_valid.jsonl input:STRING,output:STRING
Basismodell erstellen
Erstellen Sie ein Remote-Modell über dem gemini-1.0-flash-002
-Modell von Vertex AI.
Öffnen Sie in der Google Cloud Console die Seite BigQuery.
Führen Sie im Abfrageeditor die folgende Anweisung aus, um ein Remote-Modell zu erstellen:
CREATE OR REPLACE MODEL `bqml_tutorial.gemini_baseline` REMOTE WITH CONNECTION `LOCATION.CONNECTION_ID` OPTIONS (ENDPOINT ='gemini-1.5-flash-002');
Ersetzen Sie Folgendes:
LOCATION
: Standort der VerbindungCONNECTION_ID
ist die ID Ihrer BigQuery-Verbindung.Wenn Sie sich Verbindungsdetails in der Google Cloud -Konsole ansehen, ist die
CONNECTION_ID
der Wert im letzten Abschnitt der voll qualifizierten Verbindungs-ID, der unter Verbindungs-ID angezeigt wird, z. B.projects/myproject/locations/connection_location/connections/myconnection
.
Die Abfrage dauert mehrere Sekunden. Anschließend wird das Modell
gemini_baseline
imbqml_tutorial
-Dataset des Bereichs Explorer angezeigt. Da die Abfrage eineCREATE MODEL
-Anweisung zum Erstellen eines Modells verwendet, gibt es keine Abfrageergebnisse.
Leistung des Basismodells prüfen
Führen Sie die ML.GENERATE_TEXT
-Funktion
mit dem Remote-Modell aus, um zu sehen, wie es mit den Bewertungsdaten ohne
Feinabstimmung funktioniert.
Öffnen Sie in der Google Cloud Console die Seite BigQuery.
Führen Sie im Abfrageeditor folgende Abfrage aus:
SELECT ml_generate_text_llm_result, ground_truth FROM ML.GENERATE_TEXT( MODEL `bqml_tutorial.gemini_baseline`, ( SELECT input AS prompt, output AS ground_truth FROM `bqml_tutorial.wiki_auto_style_transfer_valid` LIMIT 10 ), STRUCT(TRUE AS flatten_json_output));
Wenn Sie die Ausgabedaten untersuchen und
ml_generate_text_llm_result
undground_truth
vergleichen, sehen Sie, dass das Basismodell zwar Text generiert, der die in den Ground-Truth-Inhalten angegebenen Fakten genau widerspiegelt, der Stil des Texts aber ziemlich anders ist.
Basismodell bewerten
Wenn Sie die Modellleistung genauer bewerten möchten, verwenden Sie die ML.EVALUATE
-Funktion.
Diese Funktion berechnet Modellmesswerte, mit denen die Genauigkeit und Qualität des generierten Texts gemessen wird, um die Antworten des Modells mit idealen Antworten zu vergleichen.
Öffnen Sie in der Google Cloud Console die Seite BigQuery.
Führen Sie im Abfrageeditor folgende Abfrage aus:
SELECT * FROM ML.EVALUATE( MODEL `bqml_tutorial.gemini_baseline`, ( SELECT input AS input_text, output AS output_text FROM `bqml_tutorial.wiki_auto_style_transfer_valid` ), STRUCT('text_generation' AS task_type));
Die Ausgabe sieht dann ungefähr so aus:
+---------------------+---------------------+-------------------------------------------+--------------------------------------------+ | bleu4_score | rouge-l_precision | rouge-l_recall | rouge-l_f1_score | evaluation_status | +---------------------+---------------------+---------------------+---------------------+--------------------------------------------+ | 0.15289758194680161 | 0.24925921915413246 | 0.44622484204944518 | 0.30851122211104348 | { | | | | | | "num_successful_rows": 176, | | | | | | "num_total_rows": 176 | | | | | | } | +---------------------+---------------------+ --------------------+---------------------+--------------------------------------------+
Wie Sie sehen, ist die Leistung des Basismodells nicht schlecht, aber die Ähnlichkeit des generierten Texts mit der Ground Truth ist laut den Bewertungsmesswerten gering. Das bedeutet, dass es sich lohnt, eine überwachte Abstimmung vorzunehmen, um zu sehen, ob sich die Modellleistung für diesen Anwendungsfall verbessern lässt.
Abgestimmtes Modell erstellen
Erstellen Sie ein Remote-Modell, das dem ähnelt, das Sie unter Modell erstellen erstellt haben, aber geben Sie dieses Mal die AS SELECT
-Klausel an, um die Trainingsdaten bereitzustellen, damit das Modell optimiert wird.
Öffnen Sie in der Google Cloud Console die Seite BigQuery.
Führen Sie im Query Editor die folgende Anweisung aus, um eine Remote-Modell zu erstellen:
CREATE OR REPLACE MODEL `bqml_tutorial.gemini_tuned` REMOTE WITH CONNECTION `LOCATION.CONNECTION_ID` OPTIONS ( endpoint = 'gemini-1.5-flash-002', max_iterations = 500, data_split_method = 'no_split') AS SELECT input AS prompt, output AS label FROM `bqml_tutorial.wiki_auto_style_transfer_train`;
Ersetzen Sie Folgendes:
LOCATION
: Standort der VerbindungCONNECTION_ID
ist die ID Ihrer BigQuery-Verbindung.Wenn Sie sich Verbindungsdetails in der Google Cloud -Konsole ansehen, ist die
CONNECTION_ID
der Wert im letzten Abschnitt der voll qualifizierten Verbindungs-ID, der unter Verbindungs-ID angezeigt wird, z. B.projects/myproject/locations/connection_location/connections/myconnection
.
Die Abfrage dauert einige Minuten. Anschließend wird das Modell
gemini_tuned
imbqml_tutorial
-Dataset des Bereichs Explorer angezeigt. Da die Abfrage eineCREATE MODEL
-Anweisung zum Erstellen eines Modells verwendet, gibt es keine Abfrageergebnisse.
Leistung des abgestimmten Modells prüfen
Führen Sie die Funktion ML.GENERATE_TEXT
aus, um die Leistung des abgestimmten Modells für die
Bewertungsdaten zu sehen.
Öffnen Sie in der Google Cloud Console die Seite BigQuery.
Führen Sie im Abfrageeditor folgende Abfrage aus:
SELECT ml_generate_text_llm_result, ground_truth FROM ML.GENERATE_TEXT( MODEL `bqml_tutorial.gemini_tuned`, ( SELECT input AS prompt, output AS ground_truth FROM `bqml_tutorial.wiki_auto_style_transfer_valid` LIMIT 10 ), STRUCT(TRUE AS flatten_json_output));
Bei der Überprüfung der Ausgabedaten stellen Sie fest, dass das abgestimmte Modell Text generiert, der dem Stil der Ground-Truth-Inhalte viel ähnlicher ist.
Abgestimmtes Modell bewerten
Mit der Funktion ML.EVALUATE
können Sie die Antworten des abgestimmten Modells mit den idealen Antworten vergleichen.
Öffnen Sie in der Google Cloud Console die Seite BigQuery.
Führen Sie im Abfrageeditor folgende Abfrage aus:
SELECT * FROM ML.EVALUATE( MODEL `bqml_tutorial.gemini_tuned`, ( SELECT input AS prompt, output AS label FROM `bqml_tutorial.wiki_auto_style_transfer_valid` ), STRUCT('text_generation' AS task_type));
Die Ausgabe sieht dann ungefähr so aus:
+---------------------+---------------------+-------------------------------------------+--------------------------------------------+ | bleu4_score | rouge-l_precision | rouge-l_recall | rouge-l_f1_score | evaluation_status | +---------------------+---------------------+---------------------+---------------------+--------------------------------------------+ | 0.19391708685890585 | 0.34170970869469058 | 0.46793189219384496 | 0.368190192211538 | { | | | | | | "num_successful_rows": 176, | | | | | | "num_total_rows": 176 | | | | | | } | +---------------------+---------------------+ --------------------+---------------------+--------------------------------------------+
Obwohl im Trainings-Dataset nur 1.408 Beispiele verwendet wurden,hat sich die Leistung deutlich verbessert, wie die höheren Bewertungsmesswerte zeigen.
Bereinigen
- In the Google Cloud console, go to the Manage resources page.
- In the project list, select the project that you want to delete, and then click Delete.
- In the dialog, type the project ID, and then click Shut down to delete the project.