Feinabstimmung und Bewertung verwenden, um die Modelleistung zu verbessern

In dieser Anleitung wird gezeigt, wie Sie ein BigQuery ML-Remote-Modell erstellen, das auf ein Vertex AI-gemini-1.5-flash-002-Modell verweist. Anschließend verwenden Sie Überwachte Abstimmung um das Modell mit neuen Trainingsdaten zu optimieren, gefolgt von der Bewertung des Modells mit der ML.EVALUATE Funktion

Die Tuning-Funktion kann Ihnen bei der Behebung von Szenarien helfen, in denen Sie das gehostete Vertex AI-Modell anpassen müssen, z. B. wenn das erwartete Verhalten des Modells schwierig zu definieren ist in einem Prompt oder wenn Prompts nicht die erwarteten Ergebnisse generieren, d. h. Ergebnisse, die konsistent genug sind. Die überwachte Abstimmung wirkt sich auch so auf das Modell aus:

  • Leitet das Modell so, dass bestimmte Antwortstile zurückgegeben werden, z. B. mit prägnanteren oder ausführlicheren Antworten.
  • Bringt dem Modell neue Verhaltensweisen bei, z. B. das Beantworten von Prompts als eine bestimmte Persona.
  • Das Modell wird mit neuen Informationen aktualisiert.

In dieser Anleitung soll das Modell Text generieren, dessen Stil und Inhalt so nah wie möglich an den bereitgestellten Grundwahrheitsinhalten liegen.

Erforderliche Berechtigungen

  • Zum Erstellen einer Verbindung benötigen Sie die folgende Rolle der Identitäts- und Zugriffsverwaltung (Identity and Access Management, IAM):

    • roles/bigquery.connectionAdmin
  • Zum Erteilen von Berechtigungen für das Dienstkonto der Verbindung benötigen Sie die folgende Berechtigung:

    • resourcemanager.projects.setIamPolicy
  • Zum Erstellen des Modells mit BigQuery ML benötigen Sie die folgenden IAM-Berechtigungen:

    • bigquery.jobs.create
    • bigquery.models.create
    • bigquery.models.getData
    • bigquery.models.updateData
    • bigquery.models.updateMetadata
  • Zum Ausführen von Inferenzen benötigen Sie die folgenden Berechtigungen:

    • bigquery.tables.getData für die Tabelle
    • bigquery.models.getData für das Modell
    • bigquery.jobs.create

Hinweise

  1. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  2. Make sure that billing is enabled for your Google Cloud project.

  3. Enable the BigQuery, BigQuery Connection, Vertex AI, and Compute Engine APIs.

    Enable the APIs

Kosten

In diesem Dokument verwenden Sie die folgenden kostenpflichtigen Komponenten von Google Cloud:

  • BigQuery: You incur costs for the queries that you run in BigQuery.
  • BigQuery ML: You incur costs for the model that you create and the processing that you perform in BigQuery ML.
  • Vertex AI: You incur costs for calls to and supervised tuning of the gemini-1.0-flash-002 model.

Mit dem Preisrechner können Sie eine Kostenschätzung für Ihre voraussichtliche Nutzung vornehmen. Neuen Google Cloud-Nutzern steht möglicherweise eine kostenlose Testversion zur Verfügung.

Weitere Informationen finden Sie in den folgenden Ressourcen:

Dataset erstellen

Erstellen Sie ein BigQuery-Dataset, um Ihr ML-Modell zu speichern:

  1. Rufen Sie in der Google Cloud Console die Seite „BigQuery“ auf.

    Zur Seite "BigQuery"

  2. Klicken Sie im Bereich Explorer auf den Namen Ihres Projekts.

  3. Klicken Sie auf Aktionen ansehen > Dataset erstellen.

    Dataset erstellen

  4. Führen Sie auf der Seite Dataset erstellen die folgenden Schritte aus:

    • Geben Sie unter Dataset-ID bqml_tutorial ein.

    • Wählen Sie als Standorttyp die Option Mehrere Regionen und dann USA (mehrere Regionen in den USA) aus.

      Die öffentlichen Datasets sind am multiregionalen Standort US gespeichert. Der Einfachheit halber sollten Sie Ihr Dataset am selben Standort speichern.

    • Übernehmen Sie die verbleibenden Standardeinstellungen unverändert und klicken Sie auf Dataset erstellen.

      Seite "Dataset erstellen"

Verbindung herstellen

Erstellen Sie eine Cloud-Ressourcenverbindung und rufen Sie die Dienstkonto-ID der Verbindung ab. Erstellen Sie die Verbindung in demselben Standort wie dem des von Ihnen im vorherigen Schritt erstellten Datasets.

Wählen Sie eine der folgenden Optionen aus:

Console

  1. Rufen Sie die Seite BigQuery auf.

    BigQuery aufrufen

  2. Klicken Sie auf Hinzufügen und dann auf Verbindungen zu externen Datenquellen, um eine Verbindung zu erstellen.

  3. Wählen Sie in der Liste Verbindungstyp die Option Vertex AI-Remote-Modelle, Remote-Funktionen und BigLake (Cloud Resource) aus.

  4. Geben Sie im Feld Verbindungs-ID einen Namen für die Verbindung ein.

  5. Klicken Sie auf Verbindung erstellen.

  6. Klicken Sie auf Zur Verbindung.

  7. Kopieren Sie im Bereich Verbindungsinformationen die Dienstkonto-ID zur Verwendung in einem späteren Schritt.

bq

  1. Erstellen Sie in einer Befehlszeilenumgebung eine Verbindung:

    bq mk --connection --location=REGION --project_id=PROJECT_ID \
        --connection_type=CLOUD_RESOURCE CONNECTION_ID

    Der Parameter --project_id überschreibt das Standardprojekt.

    Ersetzen Sie dabei Folgendes:

    • REGION: Ihre Verbindungsregion
    • PROJECT_ID: Ihre Google Cloud -Projekt-ID
    • CONNECTION_ID: eine ID für Ihre Verbindung

    Wenn Sie eine Verbindungsressource herstellen, erstellt BigQuery ein eindeutiges Systemdienstkonto und ordnet es der Verbindung zu.

    Fehlerbehebung:Wird der folgende Verbindungsfehler angezeigt, aktualisieren Sie das Google Cloud SDK:

    Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
    
  2. Rufen Sie die Dienstkonto-ID ab und kopieren Sie sie zur Verwendung in einem späteren Schritt:

    bq show --connection PROJECT_ID.REGION.CONNECTION_ID

    Die Ausgabe sieht in etwa so aus:

    name                          properties
    1234.REGION.CONNECTION_ID     {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
    

Terraform

Verwenden Sie die Ressource google_bigquery_connection:

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

Im folgenden Beispiel wird eine Cloud-Ressourcenverbindung mit dem Namen my_cloud_resource_connection in der Region US erstellt:


# This queries the provider for project information.
data "google_project" "default" {}

# This creates a cloud resource connection in the US region named my_cloud_resource_connection.
# Note: The cloud resource nested object has only one output field - serviceAccountId.
resource "google_bigquery_connection" "default" {
  connection_id = "my_cloud_resource_connection"
  project       = data.google_project.default.project_id
  location      = "US"
  cloud_resource {}
}

Führen Sie die Schritte in den folgenden Abschnitten aus, um Ihre Terraform-Konfiguration auf ein Google Cloud -Projekt anzuwenden.

Cloud Shell vorbereiten

  1. Rufen Sie Cloud Shell auf.
  2. Legen Sie das Standardprojekt Google Cloud fest, auf das Sie Ihre Terraform-Konfigurationen anwenden möchten.

    Sie müssen diesen Befehl nur einmal pro Projekt und in jedem beliebigen Verzeichnis ausführen.

    export GOOGLE_CLOUD_PROJECT=PROJECT_ID

    Umgebungsvariablen werden überschrieben, wenn Sie in der Terraform-Konfigurationsdatei explizite Werte festlegen.

Verzeichnis vorbereiten

Jede Terraform-Konfigurationsdatei muss ein eigenes Verzeichnis haben (auch als Stammmodul bezeichnet).

  1. Erstellen Sie in Cloud Shell ein Verzeichnis und eine neue Datei in diesem Verzeichnis. Der Dateiname muss die Erweiterung .tf haben, z. B. main.tf. In dieser Anleitung wird die Datei als main.tf bezeichnet.
    mkdir DIRECTORY && cd DIRECTORY && touch main.tf
  2. Wenn Sie einer Anleitung folgen, können Sie den Beispielcode in jedem Abschnitt oder Schritt kopieren.

    Kopieren Sie den Beispielcode in das neu erstellte main.tf.

    Kopieren Sie optional den Code aus GitHub. Dies wird empfohlen, wenn das Terraform-Snippet Teil einer End-to-End-Lösung ist.

  3. Prüfen und ändern Sie die Beispielparameter, die auf Ihre Umgebung angewendet werden sollen.
  4. Speichern Sie die Änderungen.
  5. Initialisieren Sie Terraform. Dies ist nur einmal für jedes Verzeichnis erforderlich.
    terraform init

    Fügen Sie optional die Option -upgrade ein, um die neueste Google-Anbieterversion zu verwenden:

    terraform init -upgrade

Änderungen anwenden

  1. Prüfen Sie die Konfiguration und prüfen Sie, ob die Ressourcen, die Terraform erstellen oder aktualisieren wird, Ihren Erwartungen entsprechen:
    terraform plan

    Korrigieren Sie die Konfiguration nach Bedarf.

  2. Wenden Sie die Terraform-Konfiguration an. Führen Sie dazu den folgenden Befehl aus und geben Sie yes an der Eingabeaufforderung ein:
    terraform apply

    Warten Sie, bis Terraform die Meldung „Apply complete“ anzeigt.

  3. Öffnen Sie Ihr Google Cloud -Projekt, um die Ergebnisse aufzurufen. Rufen Sie in der Google Cloud Console Ihre Ressourcen in der Benutzeroberfläche auf, um sicherzustellen, dass Terraform sie erstellt oder aktualisiert hat.

Dem Dienstkonto der Verbindung Zugriff gewähren

Gewähren Sie Ihrem Dienstkonto die Rolle „Vertex AI Service Agent“, damit das Dienstkonto auf Vertex AI zugreifen kann. Fehlschlag beim Gewähren dieser Rolle führt zu einem Fehler. Wählen Sie eine der folgenden Optionen aus:

Console

  1. Zur Seite IAM & Verwaltung.

    IAM & Verwaltung aufrufen

  2. Klicken Sie auf Zugriff erlauben.

    Das Dialogfeld Principals hinzufügen wird geöffnet.

  3. Geben Sie im Feld Neue Hauptkonten die Dienstkonto-ID ein, die Sie zuvor kopiert haben.

  4. Klicken Sie auf Rolle auswählen.

  5. Geben Sie unter Filter Vertex AI Service Agent ein und wählen Sie diese Rolle aus.

  6. Klicken Sie auf Speichern.

gcloud

Führen Sie den Befehl gcloud projects add-iam-policy-binding aus:

gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/aiplatform.serviceAgent' --condition=None

Ersetzen Sie Folgendes:

  • PROJECT_NUMBER: Ihre Projektnummer
  • MEMBER: Die Dienstkonto-ID, die Sie zuvor kopiert haben

Das mit Ihrer Verbindung verknüpfte Dienstkonto ist eine Instanz des Dienst-Agent für BigQuery Connection Delegation, daher ist es akzeptabel, ihm eine Dienst-Agent-Rolle zuzuweisen.

Testtabellen erstellen

Erstellen Sie Tabellen mit Trainings- und Bewertungsdaten basierend auf dem öffentlichen Dataset task955_wiki_auto_style_transfer von Hugging Face.

  1. Öffnen Sie Cloud Shell.

  2. Führen Sie in Cloud Shell die folgenden Befehle aus, um Tabellen mit Test- und Bewertungsdaten zu erstellen:

    python3 -m pip install pandas pyarrow fsspec huggingface_hub
    
    python3 -c "import pandas as pd; df_train = pd.read_parquet('hf://datasets/Lots-of-LoRAs/task955_wiki_auto_style_transfer/data/train-00000-of-00001.parquet').drop('id', axis=1); df_train['output'] = [x[0] for x in df_train['output']]; df_train.to_json('wiki_auto_style_transfer_train.jsonl', orient='records', lines=True);"
    
    python3 -c "import pandas as pd; df_valid = pd.read_parquet('hf://datasets/Lots-of-LoRAs/task955_wiki_auto_style_transfer/data/valid-00000-of-00001.parquet').drop('id', axis=1); df_valid['output'] = [x[0] for x in df_valid['output']]; df_valid.to_json('wiki_auto_style_transfer_valid.jsonl', orient='records', lines=True);"
    
    bq rm -t bqml_tutorial.wiki_auto_style_transfer_train
    
    bq rm -t bqml_tutorial.wiki_auto_style_transfer_valid
    
    bq load --source_format=NEWLINE_DELIMITED_JSON bqml_tutorial.wiki_auto_style_transfer_train wiki_auto_style_transfer_train.jsonl input:STRING,output:STRING
    
    bq load --source_format=NEWLINE_DELIMITED_JSON bqml_tutorial.wiki_auto_style_transfer_valid wiki_auto_style_transfer_valid.jsonl input:STRING,output:STRING
    

Basismodell erstellen

Erstellen Sie ein Remote-Modell über dem gemini-1.0-flash-002-Modell von Vertex AI.

  1. Öffnen Sie in der Google Cloud Console die Seite BigQuery.

    BigQuery aufrufen

  2. Führen Sie im Abfrageeditor die folgende Anweisung aus, um ein Remote-Modell zu erstellen:

    CREATE OR REPLACE MODEL `bqml_tutorial.gemini_baseline`
    REMOTE WITH CONNECTION `LOCATION.CONNECTION_ID`
    OPTIONS (ENDPOINT ='gemini-1.5-flash-002');

    Ersetzen Sie Folgendes:

    • LOCATION: Standort der Verbindung
    • CONNECTION_ID ist die ID Ihrer BigQuery-Verbindung.

      Wenn Sie sich Verbindungsdetails in der Google Cloud -Konsole ansehen, ist die CONNECTION_ID der Wert im letzten Abschnitt der voll qualifizierten Verbindungs-ID, der unter Verbindungs-ID angezeigt wird, z. B. projects/myproject/locations/connection_location/connections/myconnection.

    Die Abfrage dauert mehrere Sekunden. Anschließend wird das Modell gemini_baseline im bqml_tutorial-Dataset des Bereichs Explorer angezeigt. Da die Abfrage eine CREATE MODEL-Anweisung zum Erstellen eines Modells verwendet, gibt es keine Abfrageergebnisse.

Leistung des Basismodells prüfen

Führen Sie die ML.GENERATE_TEXT-Funktion mit dem Remote-Modell aus, um zu sehen, wie es mit den Bewertungsdaten ohne Feinabstimmung funktioniert.

  1. Öffnen Sie in der Google Cloud Console die Seite BigQuery.

    BigQuery aufrufen

  2. Führen Sie im Abfrageeditor folgende Abfrage aus:

    SELECT ml_generate_text_llm_result, ground_truth
    FROM
      ML.GENERATE_TEXT(
        MODEL `bqml_tutorial.gemini_baseline`,
        (
          SELECT
            input AS prompt, output AS ground_truth
          FROM `bqml_tutorial.wiki_auto_style_transfer_valid`
          LIMIT 10
        ),
        STRUCT(TRUE AS flatten_json_output));

    Wenn Sie die Ausgabedaten untersuchen und ml_generate_text_llm_result und ground_truth vergleichen, sehen Sie, dass das Basismodell zwar Text generiert, der die in den Ground-Truth-Inhalten angegebenen Fakten genau widerspiegelt, der Stil des Texts aber ziemlich anders ist.

Basismodell bewerten

Wenn Sie die Modellleistung genauer bewerten möchten, verwenden Sie die ML.EVALUATE-Funktion. Diese Funktion berechnet Modellmesswerte, mit denen die Genauigkeit und Qualität des generierten Texts gemessen wird, um die Antworten des Modells mit idealen Antworten zu vergleichen.

  1. Öffnen Sie in der Google Cloud Console die Seite BigQuery.

    BigQuery aufrufen

  2. Führen Sie im Abfrageeditor folgende Abfrage aus:

    SELECT *
    FROM
      ML.EVALUATE(
        MODEL `bqml_tutorial.gemini_baseline`,
        (
          SELECT
            input AS input_text, output AS output_text
          FROM `bqml_tutorial.wiki_auto_style_transfer_valid`
        ),
        STRUCT('text_generation' AS task_type));

Die Ausgabe sieht dann ungefähr so aus:

   +---------------------+---------------------+-------------------------------------------+--------------------------------------------+
   | bleu4_score         | rouge-l_precision   | rouge-l_recall      | rouge-l_f1_score    | evaluation_status                          |
   +---------------------+---------------------+---------------------+---------------------+--------------------------------------------+
   | 0.15289758194680161 | 0.24925921915413246 | 0.44622484204944518 | 0.30851122211104348 | {                                          |
   |                     |                     |                     |                     |  "num_successful_rows": 176,               |
   |                     |                     |                     |                     |  "num_total_rows": 176                     |
   |                     |                     |                     |                     | }                                          |
   +---------------------+---------------------+ --------------------+---------------------+--------------------------------------------+
   

Wie Sie sehen, ist die Leistung des Basismodells nicht schlecht, aber die Ähnlichkeit des generierten Texts mit der Ground Truth ist laut den Bewertungsmesswerten gering. Das bedeutet, dass es sich lohnt, eine überwachte Abstimmung vorzunehmen, um zu sehen, ob sich die Modellleistung für diesen Anwendungsfall verbessern lässt.

Abgestimmtes Modell erstellen

Erstellen Sie ein Remote-Modell, das dem ähnelt, das Sie unter Modell erstellen erstellt haben, aber geben Sie dieses Mal die AS SELECT-Klausel an, um die Trainingsdaten bereitzustellen, damit das Modell optimiert wird.

  1. Öffnen Sie in der Google Cloud Console die Seite BigQuery.

    BigQuery aufrufen

  2. Führen Sie im Query Editor die folgende Anweisung aus, um eine Remote-Modell zu erstellen:

    CREATE OR REPLACE MODEL `bqml_tutorial.gemini_tuned`
      REMOTE
        WITH CONNECTION `LOCATION.CONNECTION_ID`
      OPTIONS (
        endpoint = 'gemini-1.5-flash-002',
        max_iterations = 500,
        data_split_method = 'no_split')
    AS
    SELECT
      input AS prompt, output AS label
    FROM `bqml_tutorial.wiki_auto_style_transfer_train`;

    Ersetzen Sie Folgendes:

    • LOCATION: Standort der Verbindung
    • CONNECTION_ID ist die ID Ihrer BigQuery-Verbindung.

      Wenn Sie sich Verbindungsdetails in der Google Cloud -Konsole ansehen, ist die CONNECTION_ID der Wert im letzten Abschnitt der voll qualifizierten Verbindungs-ID, der unter Verbindungs-ID angezeigt wird, z. B. projects/myproject/locations/connection_location/connections/myconnection.

    Die Abfrage dauert einige Minuten. Anschließend wird das Modell gemini_tuned im bqml_tutorial-Dataset des Bereichs Explorer angezeigt. Da die Abfrage eine CREATE MODEL-Anweisung zum Erstellen eines Modells verwendet, gibt es keine Abfrageergebnisse.

Leistung des abgestimmten Modells prüfen

Führen Sie die Funktion ML.GENERATE_TEXT aus, um die Leistung des abgestimmten Modells für die Bewertungsdaten zu sehen.

  1. Öffnen Sie in der Google Cloud Console die Seite BigQuery.

    BigQuery aufrufen

  2. Führen Sie im Abfrageeditor folgende Abfrage aus:

    SELECT ml_generate_text_llm_result, ground_truth
    FROM
      ML.GENERATE_TEXT(
        MODEL `bqml_tutorial.gemini_tuned`,
        (
          SELECT
            input AS prompt, output AS ground_truth
          FROM `bqml_tutorial.wiki_auto_style_transfer_valid`
          LIMIT 10
        ),
        STRUCT(TRUE AS flatten_json_output));

    Bei der Überprüfung der Ausgabedaten stellen Sie fest, dass das abgestimmte Modell Text generiert, der dem Stil der Ground-Truth-Inhalte viel ähnlicher ist.

Abgestimmtes Modell bewerten

Mit der Funktion ML.EVALUATE können Sie die Antworten des abgestimmten Modells mit den idealen Antworten vergleichen.

  1. Öffnen Sie in der Google Cloud Console die Seite BigQuery.

    BigQuery aufrufen

  2. Führen Sie im Abfrageeditor folgende Abfrage aus:

    SELECT *
    FROM
      ML.EVALUATE(
        MODEL `bqml_tutorial.gemini_tuned`,
        (
          SELECT
            input AS prompt, output AS label
          FROM `bqml_tutorial.wiki_auto_style_transfer_valid`
        ),
        STRUCT('text_generation' AS task_type));

Die Ausgabe sieht dann ungefähr so aus:

   +---------------------+---------------------+-------------------------------------------+--------------------------------------------+
   | bleu4_score         | rouge-l_precision   | rouge-l_recall      | rouge-l_f1_score    | evaluation_status                          |
   +---------------------+---------------------+---------------------+---------------------+--------------------------------------------+
   | 0.19391708685890585 | 0.34170970869469058 | 0.46793189219384496 | 0.368190192211538   | {                                          |
   |                     |                     |                     |                     |  "num_successful_rows": 176,               |
   |                     |                     |                     |                     |  "num_total_rows": 176                     |
   |                     |                     |                     |                     | }                                          |
   +---------------------+---------------------+ --------------------+---------------------+--------------------------------------------+
   

Obwohl im Trainings-Dataset nur 1.408 Beispiele verwendet wurden,hat sich die Leistung deutlich verbessert, wie die höheren Bewertungsmesswerte zeigen.

Bereinigen

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.