Transcrever arquivos de áudio com a função ML.TRANSCRIBE

Neste documento, descrevemos como usar a função ML.TRANSCRIBE com um modelo remoto para transcrever arquivos de áudio de uma tabela de objetos.

Locais suportados

É preciso criar o modelo remoto usado neste procedimento em um dos seguintes locais:

  • asia-northeast1
  • asia-south1
  • asia-southeast1
  • australia-southeast1
  • eu
  • europe-west1
  • europe-west2
  • europe-west3
  • europe-west4
  • northamerica-northeast1
  • us
  • us-central1
  • us-east1
  • us-east4
  • us-west1

Execute a função ML.TRANSCRIBE na mesma região que o modelo remoto.

Permissões necessárias

  • Para trabalhar com um reconhecedor da Speech-to-Text, você precisa dos seguintes papéis:

    • speech.recognizers.create
    • speech.recognizers.get
    • speech.recognizers.recognize
    • speech.recognizers.update
  • Para criar uma conexão, você precisa da associação no seguinte papel:

    • roles/bigquery.connectionAdmin
  • Para criar o modelo usando o BigQuery ML, você precisa das seguintes permissões:

    • bigquery.jobs.create
    • bigquery.models.create
    • bigquery.models.getData
    • bigquery.models.updateData
    • bigquery.models.updateMetadata
  • Para executar a inferência, você precisa das seguintes permissões:

    • bigquery.tables.getData na tabela de objetos
    • bigquery.models.getData no modelo
    • bigquery.jobs.create

Antes de começar

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Verifique se a cobrança está ativada para o seu projeto do Google Cloud.

  4. Enable the BigQuery, BigQuery Connection API, and Speech-to-Text APIs.

    Enable the APIs

  5. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  6. Verifique se a cobrança está ativada para o seu projeto do Google Cloud.

  7. Enable the BigQuery, BigQuery Connection API, and Speech-to-Text APIs.

    Enable the APIs

Criar um reconhecedor

A Speech-to-Text é compatível com recursos chamados reconhecedores. Os reconhecedores representam configurações de reconhecimento armazenadas e reutilizáveis. É possível criar um reconhecedor para agrupar logicamente as transcrições ou o tráfego para seu aplicativo.

A criação de um reconhecedor de fala é opcional. Se você optar por criar um reconhecedor de fala, anote o ID do projeto, o local e o ID do reconhecedor para uso na instrução CREATE MODEL, conforme descrito em SPEECH_RECOGNIZER. Se você decidir não criar um reconhecedor de fala, especifique um valor para o argumento recognition_config da função ML.TRANSCRIBE.

Só é possível usar o modelo de transcrição do chirp no reconhecimento de fala ou no valor recognition_config fornecido.

Crie uma conexão

Crie uma Conexão de recursos do Cloud e tenha acesso à conta de serviço da conexão.

Selecione uma das seguintes opções:

Console

  1. Acessar a página do BigQuery.

    Acessar o BigQuery

  2. Para criar uma conexão, clique em Adicionar e em Conexões com fontes de dados externas.

  3. Na lista Tipo de conexão, selecione Modelos remotos da Vertex AI, funções remotas e BigLake (Cloud Resource).

  4. No campo ID da conexão, insira um nome para a conexão.

  5. Clique em Criar conexão.

  6. Clique em Ir para conexão.

  7. No painel Informações da conexão, copie o ID da conta de serviço para uso em uma etapa posterior.

bq

  1. Em um ambiente de linha de comando, crie uma conexão:

    bq mk --connection --location=REGION --project_id=PROJECT_ID \
        --connection_type=CLOUD_RESOURCE CONNECTION_ID

    O parâmetro --project_id substitui o projeto padrão.

    Substitua:

    • REGION: sua região de conexão
    • PROJECT_ID: o ID do projeto do Google Cloud
    • CONNECTION_ID: um ID para sua conexão

    Quando você cria um recurso de conexão, o BigQuery cria uma conta de serviço do sistema exclusiva e a associa à conexão.

    Solução de problemas: se você receber o seguinte erro de conexão, atualize o SDK Google Cloud:

    Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
    
  2. Recupere e copie o ID da conta de serviço para uso em uma etapa posterior:

    bq show --connection PROJECT_ID.REGION.CONNECTION_ID

    O resultado será assim:

    name                          properties
    1234.REGION.CONNECTION_ID     {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
    

Terraform

Anexe a seguinte seção ao seu arquivo main.tf.

 ## This creates a cloud resource connection.
 ## Note: The cloud resource nested object has only one output only field - serviceAccountId.
 resource "google_bigquery_connection" "connection" {
    connection_id = "CONNECTION_ID"
    project = "PROJECT_ID"
    location = "REGION"
    cloud_resource {}
}        
Substitua:

  • CONNECTION_ID: um ID para sua conexão
  • PROJECT_ID: o ID do projeto do Google Cloud
  • REGION: sua região de conexão

Conceder acesso à conta de serviço

Selecione uma das seguintes opções:

Console

  1. Acesse a página IAM e administrador.

    Acessar IAM e administrador

  2. Clique em Conceder acesso.

    A caixa de diálogo Adicionar principais é aberta.

  3. No campo Novos principais, digite o ID da conta de serviço que você copiou anteriormente.

  4. Clique no campo Selecionar um papel e digite Cloud Speech Client em Filtro.

  5. Clique em Adicionar outro papel.

  6. No campo Selecionar papel, escolha Cloud Storage e, em seguida, Visualizador de objetos do Storage.

  7. Clique em Salvar.

gcloud

Use o comando gcloud projects add-iam-policy-binding (em inglês).

gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/speech.client' --condition=None
gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/storage.objectViewer' --condition=None

Substitua:

  • PROJECT_NUMBER: o número do projeto.
  • MEMBER: o ID da conta de serviço que você copiou anteriormente.

Deixar de conceder a permissão resulta em um erro Permission denied.

criar um conjunto de dados

Crie um conjunto de dados para conter o modelo e a tabela de objetos.

Criar uma tabela de objetos

Crie uma tabela de objetos sobre um conjunto de arquivos de áudio no Cloud Storage. Os arquivos de áudio na tabela de objetos precisam ser de um tipo compatível.

O bucket do Cloud Storage usado pela tabela de objetos precisa estar no mesmo projeto em que você planeja criar o modelo e chamar a função ML.TRANSCRIBE. Se você quiser chamar a função ML.TRANSCRIBE em um projeto diferente que contém o bucket do Cloud Storage usado pela tabela de objetos, é preciso conceder o papel de Administrador do Storage no nível do bucket para a conta de serviço service-A@gcp-sa-aiplatform.iam.gserviceaccount.com.

Criar um modelo

Crie um modelo remoto com um REMOTE_SERVICE_TYPE de CLOUD_AI_SPEECH_TO_TEXT_V2:

CREATE OR REPLACE MODEL
`PROJECT_ID.DATASET_ID.MODEL_NAME`
REMOTE WITH CONNECTION `PROJECT_ID.REGION.CONNECTION_ID`
OPTIONS (
  REMOTE_SERVICE_TYPE = 'CLOUD_AI_SPEECH_TO_TEXT_V2',
  SPEECH_RECOGNIZER = 'projects/PROJECT_NUMBER/locations/LOCATION/recognizers/RECOGNIZER_ID'
);

Substitua:

  • PROJECT_ID: o ID do projeto.
  • DATASET_ID: o ID do conjunto de dados para conter o modelo.
  • MODEL_NAME: o nome do modelo
  • REGION: a região usada pela conexão.
  • CONNECTION_ID: o ID da conexão. Por exemplo, myconnection.

    Ao ver os detalhes da conexão no console do Google Cloud, o ID da conexão é o valor na última seção do ID da conexão totalmente qualificado, mostrado em ID da conexão, por exemplo, projects/myproject/locations/connection_location/connections/myconnection.

  • PROJECT_NUMBER: o número do projeto que contém o reconhecedor de fala. Esse valor está no card Informações do projeto na página Painel do console do Google Cloud.
  • LOCATION: o local usado pelo reconhecedor de fala. Encontre esse valor no campo Local na página Listar reconhecedores do console do Google Cloud.
  • RECOGNIZER_ID: o ID do reconhecedor de fala. Encontre esse valor no campo ID na página Listar reconhecedores do console do Google Cloud.

    Essa opção não é obrigatória. Se você não especificar um valor, um reconhecedor padrão será usado. Nesse caso, especifique um valor para o parâmetro recognition_config da função ML.TRANSCRIBE para fornecer uma configuração para o reconhecedor padrão.

    Só é possível usar o modelo de transcrição do chirp no valor recognition_config fornecido.

Transcrever arquivos de áudio

Transcreva arquivos de áudio com a função ML.TRANSCRIBE:

SELECT *
FROM ML.TRANSCRIBE(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  TABLE `PROJECT_ID.DATASET_ID.OBJECT_TABLE_NAME`,
  RECOGNITION_CONFIG => ( JSON 'recognition_config')
);

Substitua:

  • PROJECT_ID: o ID do projeto.
  • DATASET_ID: o ID do conjunto de dados que contém o modelo.
  • MODEL_NAME: o nome do modelo
  • OBJECT_TABLE_NAME: o nome da tabela de objetos que contém os URIs dos arquivos de áudio a serem processados.
  • recognition_config: um recurso RecognitionConfig no formato JSON.

    Se um reconhecedor tiver sido especificado para o modelo remoto usando a opção SPEECH_RECOGNIZER, não será possível especificar um valor recognition_config.

    Se nenhum reconhecedor tiver sido especificado para o modelo remoto usando a opção SPEECH_RECOGNIZER, será necessário especificar um valor recognition_config. Esse valor é usado para fornecer uma configuração para o reconhecedor padrão.

    Só é possível usar o modelo de transcrição do chirp no valor recognition_config fornecido.

Exemplos

Exemplo 1

O exemplo a seguir transcreve os arquivos de áudio representados pela tabela audio sem substituir a configuração padrão do reconhecedor:

SELECT *
FROM ML.TRANSCRIBE(
  MODEL `myproject.mydataset.transcribe_model`,
  TABLE `myproject.mydataset.audio`
);

O exemplo a seguir transcreve os arquivos de áudio representados pela tabela audio e fornece uma configuração para o reconhecedor padrão:

SELECT *
FROM ML.TRANSCRIBE(
  MODEL `myproject.mydataset.transcribe_model`,
  TABLE `myproject.mydataset.audio`,
  recognition_config => ( JSON '{"language_codes": ["en-US" ],"model": "chirp","auto_decoding_config": {}}')
);

A seguir