使用 ML.ANNOTATE_IMAGE 函数为图片添加注解
本文档介绍了如何将 ML.ANNOTATE_IMAGE
函数与远程模型搭配使用来为对象表中的图片添加注解。
所需权限
如需创建连接,您需要拥有以下角色的成员资格:
roles/bigquery.connectionAdmin
如需向连接的服务账号授予权限,您需要以下权限:
resourcemanager.projects.setIamPolicy
如需使用 BigQuery ML 创建模型,您需要以下权限:
bigquery.jobs.create
bigquery.models.create
bigquery.models.getData
bigquery.models.updateData
bigquery.models.updateMetadata
如需运行推理,您需要以下权限:
- 对象表的
bigquery.tables.getData
权限 - 模型的
bigquery.models.getData
权限 bigquery.jobs.create
- 对象表的
准备工作
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery, BigQuery Connection API, and Cloud Vision API APIs.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery, BigQuery Connection API, and Cloud Vision API APIs.
创建连接
创建 Cloud 资源连接并获取连接的服务账号。
从下列选项中选择一项:
控制台
转到 BigQuery 页面。
如需创建连接,请点击
添加,然后点击与外部数据源的连接。在连接类型列表中,选择 Vertex AI 远程模型、远程函数和 BigLake(Cloud 资源)。
在连接 ID 字段中,输入连接的名称。
点击创建连接。
点击转到连接。
在连接信息窗格中,复制服务账号 ID 以在后续步骤中使用。
bq
在命令行环境中,创建连接:
bq mk --connection --location=REGION --project_id=PROJECT_ID \ --connection_type=CLOUD_RESOURCE CONNECTION_ID
--project_id
参数会替换默认项目。替换以下内容:
REGION
:您的连接区域PROJECT_ID
:您的 Google Cloud 项目 IDCONNECTION_ID
:您的连接的 ID
当您创建连接资源时,BigQuery 会创建一个唯一的系统服务账号,并将其与该连接相关联。
问题排查:如果您收到以下连接错误,请更新 Google Cloud SDK:
Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
检索并复制服务账号 ID 以在后续步骤中使用:
bq show --connection PROJECT_ID.REGION.CONNECTION_ID
输出类似于以下内容:
name properties 1234.REGION.CONNECTION_ID {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
Terraform
使用 google_bigquery_connection
资源。
如需向 BigQuery 进行身份验证,请设置应用默认凭据。如需了解详情,请参阅为客户端库设置身份验证。
以下示例会在 US
区域中创建一个名为 my_cloud_resource_connection
的 Cloud 资源连接:
如需在 Google Cloud 项目中应用 Terraform 配置,请完成以下部分中的步骤。
准备 Cloud Shell
- 启动 Cloud Shell。
-
设置要在其中应用 Terraform 配置的默认 Google Cloud 项目。
您只需为每个项目运行一次以下命令,即可在任何目录中运行它。
export GOOGLE_CLOUD_PROJECT=PROJECT_ID
如果您在 Terraform 配置文件中设置显式值,则环境变量会被替换。
准备目录
每个 Terraform 配置文件都必须有自己的目录(也称为“根模块”)。
-
在 Cloud Shell 中,创建一个目录,并在该目录中创建一个新文件。文件名必须具有
.tf
扩展名,例如main.tf
。在本教程中,该文件称为main.tf
。mkdir DIRECTORY && cd DIRECTORY && touch main.tf
-
如果您按照教程进行操作,可以在每个部分或步骤中复制示例代码。
将示例代码复制到新创建的
main.tf
中。(可选)从 GitHub 中复制代码。如果端到端解决方案包含 Terraform 代码段,则建议这样做。
- 查看和修改要应用到您的环境的示例参数。
- 保存更改。
-
初始化 Terraform。您只需为每个目录执行一次此操作。
terraform init
(可选)如需使用最新的 Google 提供程序版本,请添加
-upgrade
选项:terraform init -upgrade
应用更改
-
查看配置并验证 Terraform 将创建或更新的资源是否符合您的预期:
terraform plan
根据需要更正配置。
-
通过运行以下命令并在提示符处输入
yes
来应用 Terraform 配置:terraform apply
等待 Terraform 显示“应用完成!”消息。
- 打开您的 Google Cloud 项目以查看结果。在 Google Cloud 控制台的界面中找到资源,以确保 Terraform 已创建或更新它们。
向服务账号授予访问权限
从下列选项中选择一项:
控制台
前往 IAM 和管理页面。
点击
Add。系统随即会打开添加主账号对话框。
在新的主账号字段中,输入您之前复制的服务账号 ID。
在选择角色字段中,选择 Service Usage,然后选择 Service Usage Consumer。
点击添加其他角色。
在选择角色字段中,选择 BigQuery,然后选择 BigQuery Connection User。
点击保存。
gcloud
使用 gcloud projects add-iam-policy-binding
命令:
gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/serviceusage.serviceUsageConsumer' --condition=None gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/bigquery.connectionUser' --condition=None
替换以下内容:
PROJECT_NUMBER
:您的项目编号。MEMBER
:您之前复制的服务账号 ID。
未能授予权限会导致错误。
创建对象表
创建包含图片内容的对象表。对象表让您无需从 Cloud Storage 中移动图片即可分析图片。
对象表使用的 Cloud Storage 存储桶应位于您计划创建模型并调用 ML.ANNOTATE_IMAGE
函数所在的项目中。如果您要在不同于对象表使用的 Cloud Storage 存储桶所在的项目中调用 ML.ANNOTATE_IMAGE
函数,您必须在存储桶级层将 Storage Admin 角色授予。
创建模型
使用 CLOUD_AI_VISION_V1
这一 REMOTE_SERVICE_TYPE
创建远程模型:
CREATE OR REPLACE MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME` REMOTE WITH CONNECTION PROJECT_ID.REGION.CONNECTION_ID OPTIONS (REMOTE_SERVICE_TYPE = 'CLOUD_AI_VISION_V1');
替换以下内容:
PROJECT_ID
:您的项目 ID。DATASET_ID
:包含模型的数据集的 ID。 此数据集必须与您使用的连接位于同一位置。MODEL_NAME
:模型的名称。REGION
:连接使用的区域。CONNECTION_ID
:连接 ID,例如myconnection
。当您在 Google Cloud 控制台中查看连接详情时,连接 ID 是连接 ID 中显示的完全限定连接 ID 的最后一部分中的值,例如
projects/myproject/locations/connection_location/connections/myconnection
。
为图片添加注解
使用 ML.ANNOTATE_IMAGE
函数为图片添加注解:
SELECT * FROM ML.ANNOTATE_IMAGE( MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`, TABLE PROJECT_ID.DATASET_ID.OBJECT_TABLE_NAME, STRUCT(['FEATURE_NAME' [,...]] AS vision_features) );
请替换以下内容:
PROJECT_ID
:您的项目 ID。DATASET_ID
:包含该模型的数据集的 ID。MODEL_NAME
:模型的名称。OBJECT_TABLE_NAME
:对象表的名称,该对象表包含要添加注解的图片的 URI。FEATURE_NAME
:支持的 Cloud Vision API 功能的名称。
示例 1
以下示例标记图片中显示的项:
SELECT * FROM ML.ANNOTATE_IMAGE( MODEL `myproject.mydataset.myvisionmodel`, TABLE myproject.mydataset.image_table, STRUCT(['label_detection'] AS vision_features) );
示例 2
以下示例检测图片中显示的所有人脸,并返回图片属性,例如主色:
SELECT * FROM ML.ANNOTATE_IMAGE( MODEL `myproject.mydataset.myvisionmodel`, TABLE myproject.mydataset.image_table, STRUCT(['face_detection', 'image_properties'] AS vision_features) );
后续步骤
- 如需详细了解模型推理,包括可用于分析 BigQuery 数据的其他函数,请参阅模型推理概览。
- 如需了解每种模型类型支持的 SQL 语句和函数,请参阅每个模型的端到端用户体验历程。
- 试用使用 BigQuery ML 和 Vertex AI 预训练模型进行非结构化数据分析笔记本。