Anotar imagens com a função ML.ANNOTATE_IMAGE
Neste documento, descrevemos como usar a
função ML.ANNOTATE_IMAGE
com um
modelo remoto
para anotar imagens de uma
tabela de objetos.
Permissões necessárias
Para criar uma conexão, você precisa da associação no seguinte papel:
roles/bigquery.connectionAdmin
Para conceder permissões à conta de serviço da conexão, você precisa da seguinte permissão:
resourcemanager.projects.setIamPolicy
Para criar o modelo usando o BigQuery ML, você precisa das seguintes permissões:
bigquery.jobs.create
bigquery.models.create
bigquery.models.getData
bigquery.models.updateData
bigquery.models.updateMetadata
Para executar a inferência, você precisa das seguintes permissões:
bigquery.tables.getData
na tabela de objetosbigquery.models.getData
no modelobigquery.jobs.create
Antes de começar
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery, BigQuery Connection API, and Cloud Vision API APIs.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery, BigQuery Connection API, and Cloud Vision API APIs.
Crie uma conexão
Crie uma conexão de recursos de nuvem e tenha acesso à conta de serviço da conexão.
Selecione uma das seguintes opções:
Console
Acessar a página do BigQuery.
Para criar uma conexão, clique em
Adicionar e em Conexões com fontes de dados externas.Na lista Tipo de conexão, selecione Modelos remotos da Vertex AI, funções remotas e BigLake (Cloud Resource).
No campo ID da conexão, insira um nome para a conexão.
Clique em Criar conexão.
Clique em Ir para conexão.
No painel Informações da conexão, copie o ID da conta de serviço para uso em uma etapa posterior.
bq
Em um ambiente de linha de comando, crie uma conexão:
bq mk --connection --location=REGION --project_id=PROJECT_ID \ --connection_type=CLOUD_RESOURCE CONNECTION_ID
O parâmetro
--project_id
substitui o projeto padrão.Substitua:
REGION
: sua região de conexãoPROJECT_ID
: o ID do projeto do Google Cloud .CONNECTION_ID
: um ID para sua conexão
Quando você cria um recurso de conexão, o BigQuery cria uma conta de serviço do sistema exclusiva e a associa à conexão.
Solução de problemas: se você receber o seguinte erro de conexão, atualize o SDK Google Cloud:
Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
Recupere e copie o ID da conta de serviço para uso em uma etapa posterior:
bq show --connection PROJECT_ID.REGION.CONNECTION_ID
O resultado será assim:
name properties 1234.REGION.CONNECTION_ID {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
Terraform
Use o
recurso
google_bigquery_connection
.
Para autenticar no BigQuery, configure o Application Default Credentials. Para mais informações, acesse Configurar a autenticação para bibliotecas de cliente.
O exemplo a seguir cria uma conexão de recurso do Cloud chamada my_cloud_resource_connection
na região US
:
Para aplicar a configuração do Terraform a um projeto do Google Cloud , siga as etapas nas seções a seguir.
Preparar o Cloud Shell
- Inicie o Cloud Shell.
-
Defina o projeto padrão do Google Cloud em que você quer aplicar as configurações do Terraform.
Você só precisa executar esse comando uma vez por projeto, e ele pode ser executado em qualquer diretório.
export GOOGLE_CLOUD_PROJECT=PROJECT_ID
As variáveis de ambiente serão substituídas se você definir valores explícitos no arquivo de configuração do Terraform.
Preparar o diretório
Cada arquivo de configuração do Terraform precisa ter o próprio diretório, também chamado de módulo raiz.
-
No Cloud Shell, crie um diretório e um novo
arquivo dentro dele. O nome do arquivo precisa ter a extensão
.tf
, por exemplo,main.tf
. Neste tutorial, o arquivo é chamado demain.tf
.mkdir DIRECTORY && cd DIRECTORY && touch main.tf
-
Se você estiver seguindo um tutorial, poderá copiar o exemplo de código em cada seção ou etapa.
Copie o exemplo de código no
main.tf
recém-criado.Se preferir, copie o código do GitHub. Isso é recomendado quando o snippet do Terraform faz parte de uma solução de ponta a ponta.
- Revise e modifique os parâmetros de amostra para aplicar ao seu ambiente.
- Salve as alterações.
-
Inicialize o Terraform. Você só precisa fazer isso uma vez por diretório.
terraform init
Opcionalmente, para usar a versão mais recente do provedor do Google, inclua a opção
-upgrade
:terraform init -upgrade
Aplique as alterações
-
Revise a configuração e verifique se os recursos que o Terraform vai criar ou
atualizar correspondem às suas expectativas:
terraform plan
Faça as correções necessárias na configuração.
-
Para aplicar a configuração do Terraform, execute o comando a seguir e digite
yes
no prompt:terraform apply
Aguarde até que o Terraform exiba a mensagem "Apply complete!".
- Abra seu Google Cloud projeto para conferir os resultados. No console Google Cloud , navegue até seus recursos na UI para verificar se foram criados ou atualizados pelo Terraform.
Conceder acesso à conta de serviço
Selecione uma das seguintes opções:
Console
Acesse a página IAM e administrador.
Clique em
Adicionar.A caixa de diálogo Adicionar principais é aberta.
No campo Novos principais, digite o ID da conta de serviço que você copiou anteriormente.
No campo Selecionar um papel, selecione Service Usage e, em seguida, selecione Consumidor do Service Usage.
Clique em Adicionar outro papel.
No campo Selecionar um papel, selecione BigQuery e, em seguida, selecione Usuário de conexão do BigQuery.
Clique em Salvar.
gcloud
Use o comando gcloud projects add-iam-policy-binding
(em inglês).
gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/serviceusage.serviceUsageConsumer' --condition=None gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/bigquery.connectionUser' --condition=None
Substitua:
PROJECT_NUMBER
: o número do projeto.MEMBER
: o ID da conta de serviço que você copiou anteriormente.
Deixar de conceder a permissão resulta em erro.
Criar uma tabela de objetos
Crie uma tabela de objetos com conteúdo de imagens. Com a tabela de objetos, é possível analisar as imagens sem movê-las do Cloud Storage.
O bucket do Cloud Storage usado pela tabela de objetos precisa estar no
mesmo projeto em que você planeja criar o modelo e chamar a
função ML.ANNOTATE_IMAGE
. Se você quiser chamar a
função ML.ANNOTATE_IMAGE
em um projeto diferente
que contém o bucket do Cloud Storage usado pela tabela de objetos, é preciso
conceder o papel de Administrador do Storage no nível do bucket
Criar um modelo
Crie um modelo remoto com um REMOTE_SERVICE_TYPE
de CLOUD_AI_VISION_V1
:
CREATE OR REPLACE MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME` REMOTE WITH CONNECTION PROJECT_ID.REGION.CONNECTION_ID OPTIONS (REMOTE_SERVICE_TYPE = 'CLOUD_AI_VISION_V1');
Substitua:
PROJECT_ID
: o ID do projeto.DATASET_ID
: o ID do conjunto de dados para conter o modelo. Esse conjunto de dados precisa estar no mesmo local que a conexão que você está usando.MODEL_NAME
: o nome do modeloREGION
: a região usada pela conexão.CONNECTION_ID
: o ID da conexão. Por exemplo,myconnection
.Quando você confere os detalhes da conexão no console Google Cloud , o ID da conexão é o valor na última seção do ID da conexão totalmente qualificado, mostrado em ID da conexão, por exemplo,
projects/myproject/locations/connection_location/connections/myconnection
.
Anotar imagens
Anote as imagens com a função ML.ANNOTATE_IMAGE
:
SELECT * FROM ML.ANNOTATE_IMAGE( MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`, TABLE PROJECT_ID.DATASET_ID.OBJECT_TABLE_NAME, STRUCT(['FEATURE_NAME' [,...]] AS vision_features) );
Substitua:
PROJECT_ID
: o ID do projeto.DATASET_ID
: o ID do conjunto de dados que contém o modelo.MODEL_NAME
: o nome do modeloOBJECT_TABLE_NAME
: o nome da tabela de objetos que contém os URIs das imagens a serem anotadas.FEATURE_NAME
: o nome de um recurso da API Cloud Vision compatível.
Exemplo 1
O exemplo a seguir rotula os itens mostrados nas imagens:
SELECT * FROM ML.ANNOTATE_IMAGE( MODEL `myproject.mydataset.myvisionmodel`, TABLE myproject.mydataset.image_table, STRUCT(['label_detection'] AS vision_features) );
Exemplo 2
O exemplo a seguir detecta todos os rostos mostrados nas imagens e também retorna atributos de imagem, como cores dominantes:
SELECT * FROM ML.ANNOTATE_IMAGE( MODEL `myproject.mydataset.myvisionmodel`, TABLE myproject.mydataset.image_table, STRUCT(['face_detection', 'image_properties'] AS vision_features) );
A seguir
- Para saber mais sobre a inferência de modelo, incluindo outras funções que podem ser usadas para analisar dados do BigQuery, consulte Visão geral da inferência de modelo.
- Para informações sobre as funções e instruções SQL compatíveis com cada tipo de modelo, consulte Jornada do usuário completa de cada modelo.
- Teste o notebook de análise de dados não estruturados com o BigQuery ML e os modelos pré-treinados da Vertex AI.