Dokumente mit der Funktion ML.PROCESS_DOCUMENT verarbeiten
Dieses Dokument beschreibt, wie die Funktion ML.PROCESS_DOCUMENT
mit einem Remote-Modell verwendet wird, um nützliche Erkenntnisse aus Dokumenten in eine Objekttabelle zu extrahieren.
Unterstützte Standorte
Sie müssen das in diesem Verfahren verwendete Remote-Modell entweder in der Multiregion US
oder EU
erstellen. Sie müssen die ML.PROCESS_DOCUMENT
-Funktion in derselben Region wie das Remote-Modell ausführen.
Erforderliche Berechtigungen
Zum Erstellen eines Document AI-Prozessors benötigen Sie die folgende Rolle:
roles/documentai.editor
Zum Erstellen einer Verbindung benötigen Sie die Mitgliedschaft in der folgenden Rolle:
roles/bigquery.connectionAdmin
Zum Erstellen des Modells mit BigQuery ML benötigen Sie die folgenden Berechtigungen:
bigquery.jobs.create
bigquery.models.create
bigquery.models.getData
bigquery.models.updateData
bigquery.models.updateMetadata
Zum Ausführen von Inferenzen benötigen Sie die folgenden Berechtigungen:
bigquery.tables.getData
für die Objekttabellebigquery.models.getData
für das Modellbigquery.jobs.create
Hinweise
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery, BigQuery Connection API, and Document AI APIs.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery, BigQuery Connection API, and Document AI APIs.
Prozessor erstellen
Erstellen Sie einen Prozessor in Document AI, um die Dokumente zu verarbeiten. Der Prozessor muss einen unterstützten Typ haben.
Verbindung herstellen
Erstellen Sie eine Cloud-Ressourcenverbindung und rufen Sie das Dienstkonto der Verbindung ab.
Wählen Sie eine der folgenden Optionen aus:
Console
Rufen Sie die Seite BigQuery auf.
Klicken Sie auf
Hinzufügen und dann auf Verbindungen zu externen Datenquellen, um eine Verbindung zu erstellen.Wählen Sie in der Liste Verbindungstyp die Option Vertex AI-Remote-Modelle, Remote-Funktionen und BigLake (Cloud Resource) aus.
Geben Sie im Feld Verbindungs-ID einen Namen für die Verbindung ein.
Klicken Sie auf Verbindung erstellen.
Klicken Sie auf Zur Verbindung.
Kopieren Sie im Bereich Verbindungsinformationen die Dienstkonto-ID zur Verwendung in einem späteren Schritt.
bq
Erstellen Sie in einer Befehlszeilenumgebung eine Verbindung:
bq mk --connection --location=REGION --project_id=PROJECT_ID \ --connection_type=CLOUD_RESOURCE CONNECTION_ID
Der Parameter
--project_id
überschreibt das Standardprojekt.Ersetzen Sie dabei Folgendes:
REGION
: Ihre VerbindungsregionPROJECT_ID
: Ihre Google Cloud-Projekt-IDCONNECTION_ID
: eine ID für Ihre Verbindung
Wenn Sie eine Verbindungsressource herstellen, erstellt BigQuery ein eindeutiges Systemdienstkonto und ordnet es der Verbindung zu.
Fehlerbehebung:Wird der folgende Verbindungsfehler angezeigt, aktualisieren Sie das Google Cloud SDK:
Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
Rufen Sie die Dienstkonto-ID ab und kopieren Sie sie zur Verwendung in einem späteren Schritt:
bq show --connection PROJECT_ID.REGION.CONNECTION_ID
Die Ausgabe sieht in etwa so aus:
name properties 1234.REGION.CONNECTION_ID {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
Terraform
Hängen Sie folgenden Abschnitt an Ihre main.tf
-Datei an.
## This creates a cloud resource connection. ## Note: The cloud resource nested object has only one output only field - serviceAccountId. resource "google_bigquery_connection" "connection" { connection_id = "CONNECTION_ID" project = "PROJECT_ID" location = "REGION" cloud_resource {} }
CONNECTION_ID
: eine ID für Ihre VerbindungPROJECT_ID
: Ihre Google Cloud-Projekt-IDREGION
: Ihre Verbindungsregion
Zugriff auf das Dienstkonto gewähren
Wählen Sie eine der folgenden Optionen aus:
Console
Zur Seite IAM & Verwaltung.
Klicken Sie auf
Zugriff gewähren.Das Dialogfeld Principals hinzufügen wird geöffnet.
Geben Sie im Feld Neue Hauptkonten die Dienstkonto-ID ein, die Sie zuvor kopiert haben.
Wählen Sie im Feld Rolle auswählen die Option Document AI und dann Document AI-Betrachter aus.
Klicken Sie auf Weitere Rolle hinzufügen.
Wählen Sie im Feld Rolle auswählen die Option Cloud Storage und dann Storage-Objekt-Betrachter aus.
Klicken Sie auf Speichern.
gcloud
Führen Sie den Befehl gcloud projects add-iam-policy-binding
aus:
gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/documentai.viewer' --condition=None gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/storage.objectViewer' --condition=None
Dabei gilt:
PROJECT_NUMBER
: Ihre Projektnummer.MEMBER
: Die Dienstkonto-ID, die Sie zuvor kopiert haben.
Wird die Berechtigung nicht erteilt, wird der Fehler Permission denied
ausgegeben.
Dataset erstellen
Erstellen Sie ein Dataset, das das Modell und die Objekttabelle enthält. Sie müssen das Dataset, die Verbindung und den Dokumentenprozessor in derselben Region erstellen.
Modell erstellen
Erstellen Sie ein Remote-Modell mit einem REMOTE_SERVICE_TYPE
von CLOUD_AI_DOCUMENT_V1
:
CREATE OR REPLACE MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME` REMOTE WITH CONNECTION `PROJECT_ID.REGION.CONNECTION_ID` OPTIONS ( REMOTE_SERVICE_TYPE = 'CLOUD_AI_DOCUMENT_V1', DOCUMENT_PROCESSOR = 'PROCESSOR_ID' );
Dabei gilt:
PROJECT_ID
: Ihre Projekt-ID.DATASET_ID
ist die ID des Datasets, das das Modell enthalten soll.MODEL_NAME
ist der Name des Modells.REGION
ist die Region, die von der Verbindung verwendet wird.CONNECTION_ID
: die Verbindungs-ID, z. B.myconnection
.Wenn Sie sich Verbindungsdetails in der Google Cloud Console ansehen, ist die Verbindungs-ID der Wert im letzten Abschnitt der voll qualifizierten Verbindungs-ID, der unter Verbindungs-ID angezeigt wird, z. B.
projects/myproject/locations/connection_location/connections/myconnection
.PROCESSOR_ID
: die Prozessor-ID des Dokuments. Um diesen Wert zu ermitteln, sehen Sie sich die Prozessordetails an und suchen Sie dann im Abschnitt Allgemeine Informationen nach der Zeile ID.
Klicken Sie nach dem Erstellen des Modells im Abfrageergebnis auf Zum Modell, um die Spalten der Modellausgabe aufzurufen. Die Ausgabespalten werden im Abschnitt Labels auf dem Tab Schema angezeigt.
Objekttabelle erstellen
Erstellen Sie eine Objekttabelle für eine Reihe von Dokumenten in Cloud Storage. Die Dokumente in der Objekttabelle müssen einen unterstützten Typ haben.
Dokumente verarbeiten
Verarbeiten Sie alle Dokumente mit der ML.PROCESS_DOCUMENT
:
SELECT * FROM ML.PROCESS_DOCUMENT( MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`, TABLE `PROJECT_ID.DATASET_ID.OBJECT_TABLE_NAME` );
Ersetzen Sie Folgendes:
PROJECT_ID
: Ihre Projekt-ID.DATASET_ID
ist die ID des Datasets, das das Modell enthält.MODEL_NAME
ist der Name des Modells.OBJECT_TABLE_NAME
: der Name der Objekttabelle, die die URIs der zu verarbeitenden Dokumente enthält.
Alternativ können Sie einige der Dokumente mit der ML.PROCESS_DOCUMENT
verarbeiten:
SELECT * FROM ML.PROCESS_DOCUMENT( MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`, (SELECT * FROM `PROJECT_ID.DATASET_ID.OBJECT_TABLE_NAME` WHERE FILTERS LIMIT NUM_DOCUMENTS ) );
Ersetzen Sie Folgendes:
PROJECT_ID
: Ihre Projekt-ID.DATASET_ID
ist die ID des Datasets, das das Modell enthält.MODEL_NAME
ist der Name des Modells.OBJECT_TABLE_NAME
: der Name der Objekttabelle, die die URIs der zu verarbeitenden Dokumente enthält.FILTERS
: Bedingungen, mit denen die Dokumente herausgefiltert werden, die in den Spalten der Objekttabelle verarbeitet werden sollen.NUM_DOCUMENTS
: die maximale Anzahl der Dokumente, die Sie verarbeiten möchten.
Beispiele
Beispiel 1
Im folgenden Beispiel wird der Kostenparser verwendet, um die in der Tabelle documents
dargestellten Dokumente zu verarbeiten:
SELECT * FROM ML.PROCESS_DOCUMENT( MODEL `myproject.mydataset.expense_parser`, TABLE `myproject.mydataset.documents` );
Diese Abfrage gibt die geparsten Ausgabenberichte zurück, einschließlich der Währung, des Gesamtbetrags, des Belegdatums und der Positionen in den Kostenberichten. Die Spalte ml_process_document_result
enthält die Rohausgabe des Kostenparsers und die Spalte ml_process_document_status
enthält alle Fehler, die von der Dokumentverarbeitung zurückgegeben werden.
Beispiel 2
Das folgende Beispiel zeigt, wie Sie die Objekttabelle filtern, um die zu verarbeitenden Dokumente auszuwählen und die Ergebnisse anschließend in eine neue Tabelle zu schreiben:
CREATE TABLE `myproject.mydataset.expense_details` AS SELECT uri, content_type, receipt_date, purchase_time, total_amount, currency FROM ML.PROCESS_DOCUMENT( MODEL `myproject.mydataset.expense_parser`, (SELECT * FROM `myproject.mydataset.expense_reports` WHERE uri LIKE '%restaurant%'));
Nächste Schritte
- Weitere Informationen zur Modellinferenz in BigQuery ML finden Sie unter Modellinferenz.
- Informationen zu den unterstützten SQL-Anweisungen und -Funktionen für die einzelnen Modelltypen finden Sie unter End-to-End-Nutzerpfad für jedes Modell.