Elabora i documenti con la funzione ML.PROCESS_DOCUMENT

Questo documento descrive come utilizzare Funzione ML.PROCESS_DOCUMENT con un modello remoto per estrarre insight utili dai documenti in un tabella degli oggetti.

Località supportate

Devi creare il modello remoto utilizzato in questa procedura nella US o EU multiregionale. Devi eseguire la funzione ML.PROCESS_DOCUMENT nella stessa regione del modello remoto.

Autorizzazioni obbligatorie

  • Per creare un elaboratore Document AI, devi disporre del seguente ruolo:

    • roles/documentai.editor
  • Per creare una connessione, devi avere l'appartenenza al seguente ruolo:

    • roles/bigquery.connectionAdmin
  • Per creare il modello utilizzando BigQuery ML, è necessario quanto segue autorizzazioni:

    • bigquery.jobs.create
    • bigquery.models.create
    • bigquery.models.getData
    • bigquery.models.updateData
    • bigquery.models.updateMetadata
  • Per eseguire l'inferenza, devi disporre delle seguenti autorizzazioni:

    • bigquery.tables.getData nella tabella dell'oggetto
    • bigquery.models.getData sul modello
    • bigquery.jobs.create

Prima di iniziare

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the BigQuery, BigQuery Connection API, and Document AI APIs.

    Enable the APIs

  5. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  6. Make sure that billing is enabled for your Google Cloud project.

  7. Enable the BigQuery, BigQuery Connection API, and Document AI APIs.

    Enable the APIs

Crea un processore

Crea un processore in Document AI per elaborare i documenti. Il processore deve essere di un tipo supportato.

Crea una connessione

Crea una connessione risorsa cloud e recupera l'account di servizio della connessione.

Seleziona una delle seguenti opzioni:

Console

  1. Vai alla pagina BigQuery.

    Vai a BigQuery

  2. Per creare una connessione, fai clic su Aggiungi e poi su Connessioni a origini dati esterne.

  3. Nell'elenco Tipo di connessione, seleziona Modelli remoti di Vertex AI, funzioni remote e BigLake (risorsa Cloud).

  4. Nel campo ID connessione, inserisci un nome per la connessione.

  5. Fai clic su Crea connessione.

  6. Fai clic su Vai alla connessione.

  7. Nel riquadro Informazioni sulla connessione, copia l'ID account di servizio da utilizzare in un passaggio successivo.

bq

  1. In un ambiente a riga di comando, crea una connessione:

    bq mk --connection --location=REGION --project_id=PROJECT_ID \
        --connection_type=CLOUD_RESOURCE CONNECTION_ID

    Il parametro --project_id sostituisce il progetto predefinito.

    Sostituisci quanto segue:

    • REGION: la regione di connessione
    • PROJECT_ID: l'ID del tuo progetto Google Cloud
    • CONNECTION_ID: un ID per connessione

    Quando crei una risorsa di connessione, BigQuery crea di account di servizio di sistema univoco e lo associa alla connessione.

    Risoluzione dei problemi: se ricevi il seguente errore di connessione, aggiorna Google Cloud SDK:

    Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
    
  2. Recupera e copia l'ID account di servizio per utilizzarlo in un passaggio successivo:

    bq show --connection PROJECT_ID.REGION.CONNECTION_ID

    L'output è simile al seguente:

    name                          properties
    1234.REGION.CONNECTION_ID     {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
    

Terraform

Aggiungi la seguente sezione al tuo file main.tf.

 ## This creates a cloud resource connection.
 ## Note: The cloud resource nested object has only one output only field - serviceAccountId.
 resource "google_bigquery_connection" "connection" {
    connection_id = "CONNECTION_ID"
    project = "PROJECT_ID"
    location = "REGION"
    cloud_resource {}
}        
Sostituisci quanto segue:

  • CONNECTION_ID: un ID per la connessione
  • PROJECT_ID: il tuo ID progetto Google Cloud
  • REGION: la regione di connessione

Concedi l'accesso all'account di servizio

Seleziona una delle seguenti opzioni:

Console

  1. Vai alla pagina IAM e amministrazione.

    Vai a IAM e amministrazione

  2. Fai clic su Concedi l'accesso.

    Viene visualizzata la finestra di dialogo Aggiungi entità.

  3. Nel campo Nuove entità, inserisci l'ID account di servizio che hai copiato in precedenza.

  4. Nel campo Seleziona un ruolo, seleziona Document AI e poi Visualizzatore Document AI.

  5. Fai clic su Aggiungi un altro ruolo.

  6. Nel campo Seleziona un ruolo, seleziona Cloud Storage e poi Visualizzatore oggetti Storage.

  7. Fai clic su Salva.

gcloud

Utilizza il comando gcloud projects add-iam-policy-binding:

gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/documentai.viewer' --condition=None
gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/storage.objectViewer' --condition=None

Sostituisci quanto segue:

  • PROJECT_NUMBER: il numero del progetto.
  • MEMBER: l'ID account di servizio che hai copiato in precedenza.

La mancata concessione dell'autorizzazione comporta un errore Permission denied.

Crea un set di dati

Crea un set di dati che contenga il modello e l'oggetto. tabella. Devi creare il set di dati, la connessione e il processore di documenti nella stessa regione.

crea un modello

Crea un modello remoto con un REMOTE_SERVICE_TYPE di CLOUD_AI_DOCUMENT_V1:

CREATE OR REPLACE MODEL
`PROJECT_ID.DATASET_ID.MODEL_NAME`
REMOTE WITH CONNECTION `PROJECT_ID.REGION.CONNECTION_ID`
OPTIONS (
  REMOTE_SERVICE_TYPE = 'CLOUD_AI_DOCUMENT_V1',
  DOCUMENT_PROCESSOR = 'PROCESSOR_ID'
);

Sostituisci quanto segue:

  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che deve contenere il modello.
  • MODEL_NAME: il nome del modello.
  • REGION: la regione utilizzata dalla connessione.
  • CONNECTION_ID: l'ID connessione per ad esempio myconnection.

    Quando visualizzi i dettagli della connessione nella console Google Cloud, l'ID connessione è il valore nell'ultima sezione dell'ID connessione completo visualizzato in ID connessione, ad esempio projects/myproject/locations/connection_location/connections/myconnection.

  • PROCESSOR_ID: l'ID dell'elaboratore dei documenti. Per trovare questo valore, visualizza i dettagli del processore, e controlla la riga ID nella sezione Informazioni di base.

Per vedere le colonne di output del modello, fai clic su Vai al modello nel risultato della query. dopo la creazione del modello. Le colonne di output vengono mostrate nella sezione Etichette della scheda Schema.

Crea una tabella di oggetti

Crea una tabella di oggetti su un insieme di documenti in Cloud Storage. I documenti nella tabella degli oggetti devono essere tipo supportato.

Elabora i documenti

Elabora tutti i documenti con ML.PROCESS_DOCUMENT:

SELECT *
FROM ML.PROCESS_DOCUMENT(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  TABLE `PROJECT_ID.DATASET_ID.OBJECT_TABLE_NAME`
);

Sostituisci quanto segue:

  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che contiene il modello.
  • MODEL_NAME: il nome del modello.
  • OBJECT_TABLE_NAME: il nome della tabella degli oggetti che contiene gli URI dei documenti da elaborare.

In alternativa, elabora alcuni documenti con ML.PROCESS_DOCUMENT:

SELECT *
FROM ML.PROCESS_DOCUMENT(
  MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`,
  (SELECT *
  FROM `PROJECT_ID.DATASET_ID.OBJECT_TABLE_NAME`
  WHERE FILTERS
  LIMIT NUM_DOCUMENTS
  )
);

Sostituisci quanto segue:

  • PROJECT_ID: il tuo ID progetto.
  • DATASET_ID: l'ID del set di dati che contiene il modello.
  • MODEL_NAME: il nome del modello.
  • OBJECT_TABLE_NAME: il nome della tabella dell'oggetto che contiene gli URI dei documenti da elaborare.
  • FILTERS: condizioni per filtrare i documenti che vuoi elaborare nelle colonne della tabella degli oggetti.
  • NUM_DOCUMENTS: il numero massimo di documenti che vuoi elaborare.

Esempi

Esempio 1

L'esempio seguente utilizza il parser delle spese per elaborare i documenti rappresentati dalla tabella documents:

SELECT *
FROM ML.PROCESS_DOCUMENT(
  MODEL `myproject.mydataset.expense_parser`,
  TABLE `myproject.mydataset.documents`
);

Questa query restituisce i report sulle spese analizzati, inclusi valuta, importo totale, data di ricezione ed elementi nei report sulle spese. La La colonna ml_process_document_result contiene l'output non elaborato della spesa dell'analizzatore sintattico e la colonna ml_process_document_status contiene eventuali errori restituiti dall'elaborazione dei documenti.

Esempio 2

L'esempio seguente mostra come filtrare la tabella degli oggetti per scegliere quale documenti da elaborare, quindi scrivi i risultati in una nuova tabella:

CREATE TABLE `myproject.mydataset.expense_details`
AS
SELECT uri, content_type, receipt_date, purchase_time, total_amount, currency
FROM
  ML.PROCESS_DOCUMENT(
    MODEL `myproject.mydataset.expense_parser`,
    (SELECT * FROM `myproject.mydataset.expense_reports`
    WHERE uri LIKE '%restaurant%'));

Passaggi successivi