CREATE MODEL ステートメントと推論関数のデフォルト設定を使用すると、ML の知識がなくても BigQuery ML モデルを作成して使用できます。ただし、特徴量エンジニアリングやモデル トレーニングなど、ML 開発ライフサイクルに関する基本的な知識があれば、データとモデルの両方を最適化して、より良い結果を得るのに役立ちます。ML の手法とプロセスに習熟するために、次のリソースの活用をおすすめします。
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["わかりにくい","hardToUnderstand","thumb-down"],["情報またはサンプルコードが不正確","incorrectInformationOrSampleCode","thumb-down"],["必要な情報 / サンプルがない","missingTheInformationSamplesINeed","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["その他","otherDown","thumb-down"]],["最終更新日 2025-03-13 UTC。"],[[["Feature preprocessing, encompassing both feature creation (engineering) and data cleaning, is a crucial step in the machine learning process."],["BigQuery ML offers automatic preprocessing during training, simplifying the process for users."],["Manual preprocessing is also available in BigQuery ML, allowing for custom preprocessing definitions using the `TRANSFORM` clause and specific functions."],["The `ML.FEATURE_INFO` function enables users to retrieve statistics about the input feature columns."],["Basic knowledge of the ML development lifecycle, including feature engineering and model training, is recommended for better optimization of data and models."]]],[]]