コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
特徴量の前処理の概要
特徴量の前処理は ML ライフサイクルにおいて最も重要なステップの一つで、特徴量の作成とトレーニング データのクリーニングで構成されます。特徴量の作成は特徴量エンジニアリングとも呼ばれます。
BigQuery ML では、次の手法で特徴量を前処理できます。
ML.FEATURE_INFO
関数を使用して、すべての入力特徴量列の統計情報を取得できます。
次のステップ
BigQuery ML における特徴のサービングについて確認する。
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-01-09 UTC。
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["わかりにくい","hardToUnderstand","thumb-down"],["情報またはサンプルコードが不正確","incorrectInformationOrSampleCode","thumb-down"],["必要な情報 / サンプルがない","missingTheInformationSamplesINeed","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["その他","otherDown","thumb-down"]],["最終更新日 2025-01-09 UTC。"],[],[]]