Carga datos JSON desde Cloud Storage

Carga archivos JSON desde Cloud Storage

Cuando cargas datos JSON delimitados por saltos de línea desde Cloud Storage, puedes cargarlos en una tabla o partición nuevas. También puedes adjuntarlos a una tabla o partición existentes o reemplazar los datos de ellas. Cuando los datos se cargan en BigQuery, se convierten en formato de columnas para Capacitor (formato de almacenamiento de BigQuery).

Cuando cargas datos de Cloud Storage en una tabla de BigQuery, el conjunto de datos que contiene la tabla debe estar en la misma ubicación regional o multirregional que el depósito de Cloud Storage.

El formato JSON delimitado por saltos de línea es el mismo que el formato líneas JSON.

Para obtener información sobre cómo cargar datos JSON desde un archivo local, consulta cómo cargar datos en BigQuery desde una fuente de datos local.

Limitaciones

Cuando cargues datos JSON de Cloud Storage en BigQuery, ten en cuenta lo siguiente:

  • Los datos JSON deben estar delimitados por saltos de línea. Cada objeto JSON debe estar en una línea separada en el archivo.
  • Si usas la compresión gzip, BigQuery no puede leer los datos en paralelo. La carga de datos JSON comprimidos en BigQuery es más lenta que la carga de datos sin comprimir.
  • No puedes incluir archivos comprimidos y descomprimidos en el mismo trabajo de carga.
  • BigQuery no admite asignaciones ni diccionarios en JSON, debido a la posible falta de información de esquema en un diccionario JSON por completo. Por ejemplo, para representar una lista de productos en un carrito, "products": {"my_product": 40.0, "product2" : 16.5} no es válido, pero "products": [{"product_name": "my_product", "amount": 40.0}, {"product_name": "product2", "amount": 16.5}] sí lo es.

    Si necesitas conservar todo el objeto JSON, debes colocarlo en una columna string, en la que se pueda consultar mediante funciones JSON.

  • Si usas la API de BigQuery para cargar un número entero fuera del rango de [-253+1, 253-1] (en la mayoría de los casos, esto significa más de 9,007,199,254,740,991) en una columna entera (INT64), debes pasarla como string a fin de evitar la corrupción de datos. Este problema se debe a una limitación del tamaño de los números enteros en JSON/ECMAScript. Para obtener más información, consulta la sección Números de RFC 7159.

  • Cuando cargues datos CSV o JSON, en los valores de las columnas DATE, se debe usar el separador de guion (-), y la fecha debe estar en el siguiente formato: YYYY-MM-DD (año-mes-día).
  • Cuando cargues datos JSON o CSV, en los valores de las columnas TIMESTAMP, se debe usar un separador de guion (-) para la parte de fecha de la marca de tiempo, y la fecha debe tener el siguiente formato: YYYY-MM-DD (año-mes-día). En la parte de hh:mm:ss (horas-minutos-segundos) de la marca de tiempo, se debe usar un separador de dos puntos (:).

Permisos necesarios

Cuando cargas datos en BigQuery, necesitas permisos para ejecutar un trabajo de carga y permisos que te habiliten a cargar datos en tablas y particiones nuevas o existentes de BigQuery. Si cargas datos desde Cloud Storage, también necesitas permisos para acceder al depósito que contiene tus datos.

Permisos de BigQuery

Para cargar datos en BigQuery, se requieren, como mínimo, los siguientes permisos. Estos permisos son obligatorios si los datos se cargan en una tabla o partición nueva, o si se reemplaza una tabla o partición o se agregan datos a esta.

  • bigquery.tables.create
  • bigquery.tables.updateData
  • bigquery.jobs.create

Las siguientes funciones predefinidas de IAM incluyen los permisos bigquery.tables.create y bigquery.tables.updateData:

  • bigquery.dataEditor
  • bigquery.dataOwner
  • bigquery.admin

Las siguientes funciones predefinidas de IAM incluyen los permisos bigquery.jobs.create:

  • bigquery.user
  • bigquery.jobUser
  • bigquery.admin

Además, si un usuario tiene permisos bigquery.datasets.create, se le otorga el acceso bigquery.dataOwner cuando crea un conjunto de datos. El acceso bigquery.dataOwner permite que el usuario cree y actualice tablas en el conjunto de datos mediante un trabajo de carga.

Para obtener más información sobre las funciones y los permisos de IAM en BigQuery, consulta Control de acceso.

Permisos de Cloud Storage

Para cargar datos desde un depósito de Cloud Storage, debes tener permisos storage.objects.get. Si usas un comodín de URI, también debes tener permisos storage.objects.list.

Se puede otorgar la función predefinida de IAM storage.objectViewer para proporcionar los permisos storage.objects.get y storage.objects.list.

Carga datos JSON en una tabla nueva

Puedes cargar datos JSON delimitados por saltos de línea desde Cloud Storage en una tabla de BigQuery nueva mediante uno de los siguientes métodos:

  • Cloud Console o la IU web clásica
  • El comando bq load de la herramienta de línea de comandos de bq
  • El método de API jobs.insert y la configuración de un trabajo load
  • Las bibliotecas cliente

Para cargar datos JSON de Cloud Storage en una tabla nueva de BigQuery, sigue estos pasos:

Console

  1. Abre la página de BigQuery en Cloud Console.

    Ir a la página BigQuery

  2. En el panel de navegación, en la sección Recursos, expande tu proyecto de Google Cloud y selecciona un conjunto de datos.

  3. En el lado derecho de la ventana, en el panel de detalles, haz clic en Crear tabla (Create table). El proceso de carga de datos es el mismo que el proceso para crear una tabla vacía.

    Crear tabla.

  4. En la página Crear tabla, en la sección Fuente haz lo siguiente:

    • En Crear tabla desde (Create table from), selecciona Cloud Storage.

    • En el campo de origen, busca o ingresa el URI de Cloud Storage. Ten en cuenta que no puedes incluir varios URI en Cloud Console, pero se admiten comodines. El depósito de Cloud Storage debe estar en la misma ubicación que el conjunto de datos que contiene la tabla que quieres crear.

      Seleccionar archivo.

    • En Formato de archivo (File format), selecciona JSON (delimitado por saltos de línea).

  5. En la sección Destination (Destino) de la página Create table (Crear tabla), haz lo siguiente:

    • En Nombre del conjunto de datos (Dataset name), selecciona el conjunto de datos que corresponda.

      Ver conjunto de datos.

    • Verifica que Tipo de tabla (Table type) esté configurado como Tabla nativa (Native table).

    • En el campo Table name (Nombre de tabla), ingresa el nombre de la tabla que quieres crear en BigQuery.

  6. En la sección Esquema, en Detección automática, marca la opción Esquema y parámetros de entrada para habilitar la detección automática de esquemas. También puedes ingresar de forma manual la definición de esquema, como se indica a continuación:

    • Habilita Editar como texto y, luego, ingresa el esquema de la tabla como un arreglo JSON.

      Agregar esquema como arreglo JSON.

    • Usa Agregar campo (Add field) para ingresar el esquema de forma manual.

      Agregar definición de esquema con el botón Agregar campo.

  7. Para particionar la tabla, elige las opciones en Configuración de partición y agrupamiento en clústeres (opcional):

    • Para crear una tabla particionada, haz clic en Sin particionar (No partitioning), selecciona Particionar por campo (Partition by field) y elige una columna DATE o TIMESTAMP. Esta opción no estará disponible si el esquema no incluye una columna DATE o TIMESTAMP.
    • Para crear una tabla particionada por tiempo de transferencia, haz clic en Sin particionar (No partitioning) y selecciona Particionar por tiempo de transferencia (Partition by ingestion time).
  8. Para el Filtro de partición, haz clic en la casilla Exigir filtro de partición a fin de solicitar a los usuarios que incluyan una cláusula WHERE que especifique las particiones que deben consultarse (opcional). Exigir un filtro de partición puede reducir los costos y mejorar el rendimiento. Para obtener más información, lee Consulta tablas particionadas. Esta opción no está disponible si se selecciona Sin particionar (No partitioning).

  9. Para agrupar en clústeres la tabla, en la casilla Orden de agrupamiento en clústeres, ingresa entre uno y cuatro nombres de campo (opcional).

  10. Haz clic en Opciones avanzadas (opcional).

    • En Preferencia de escritura (Write preference), deja seleccionado Escribir si está vacía (Write if empty). Esta opción crea una tabla nueva y carga los datos en ella.
    • En Cantidad de errores permitidos: (Number of errors allowed), acepta el valor predeterminado de 0 o ingresa la cantidad máxima de filas con errores que pueden ignorarse. Si la cantidad de filas con errores excede este valor, el trabajo generará un mensaje invalid y fallará.
    • En Valores desconocidos, marca Ignorar valores desconocidos para ignorar cualquier valor en una fila que no esté presente en el esquema de la tabla.
    • En Encriptación, haz clic en Clave administrada por el cliente para usar una clave de Cloud Key Management Service. Si dejas establecida la configuración Clave administrada por Google (Google-managed key), BigQuery encripta los datos en reposo.
  11. Haz clic en Crear tabla (Create table).

IU clásica

  1. Ve a la IU web de BigQuery.
    Ir a la IU web de BigQuery

  2. En el panel de navegación, coloca el cursor sobre un conjunto de datos, haz clic en el ícono de flecha hacia abajo Ícono de flecha hacia abajo. y en Crear tabla nueva. El proceso de carga de datos es el mismo que el proceso para crear una tabla vacía.

  3. En la sección Datos de origen (Source Data) de la página Crear tabla (Create Table), sigue estos pasos:

    • Haz clic en Crear desde el origen (Create from source).
    • En Ubicación (Location), selecciona Cloud Storage y, en el campo de origen, ingresa el URI de Cloud Storage. Ten en cuenta que no puedes incluir varios URI en la IU web de BigQuery, pero sí se admiten comodines. El depósito de Cloud Storage debe estar en la misma ubicación que el conjunto de datos que contiene la tabla que quieres crear.
    • En Formato de archivo, selecciona JSON (delimitado por saltos de línea).
  4. En la sección Tabla de destino, haz lo siguiente:

    • En Nombre de tabla (Table name), selecciona el conjunto de datos que corresponda y, en el campo de nombre de tabla, ingresa el nombre de la tabla que quieres crear en BigQuery.
    • Verifica que Tipo de tabla esté establecido en Tabla nativa.
  5. En la sección Esquema, en Detección automática, marca la opción Esquema y parámetros de entrada para habilitar la detección automática de esquemas. También puedes ingresar de forma manual la definición de esquema, como se indica a continuación:

    • Haz clic en Editar como texto y, luego, ingresa el esquema de la tabla como un arreglo JSON.

      Agregar esquema como arreglo JSON.

    • Usa Agregar campo (Add Field) para ingresar el esquema de forma manual:

      Agregar esquema con el botón Agregar campo.

  6. En la sección Opciones, sigue estos pasos (opcional):

    • En Cantidad de errores permitidos: (Number of errors allowed), acepta el valor predeterminado de 0 o ingresa la cantidad máxima de filas con errores que pueden ignorarse. Si la cantidad de filas con errores excede este valor, el trabajo generará un mensaje invalid y fallará.
    • En Preferencia de escritura (Write preference), deja seleccionado Escribir si está vacía (Write if empty). Esta opción crea una tabla nueva y carga los datos en ella.
    • Para particionar la tabla, realiza las siguientes acciones:
      • Para Tipo de partición (Partitioning Type), haz clic en Ninguna (None) y elige Día (Day).
      • En Campo de partición (Partitioning Field), haz lo siguiente:
      • Para crear una tabla particionada, elige una columna DATE o TIMESTAMP. Esta opción no estará disponible si el esquema no incluye una columna DATE o TIMESTAMP.
      • Para crear una tabla particionada por tiempo de transferencia, deja el valor predeterminado: _PARTITIONTIME.
      • Haz clic en la casilla Exigir filtro de partición para solicitar a los usuarios que incluyan una cláusula WHERE que especifique las particiones que desean consultar. Exigir un filtro de partición puede reducir los costos y mejorar el rendimiento. Para obtener más información, lee Consulta tablas particionadas. Esta opción no estará disponible si el Tipo de partición (Partitioning type) está configurado como Ninguna (None).
    • Para agrupar en clústeres la tabla, en la casilla Campos de agrupamiento en clústeres (Clustering fields), ingresa entre uno y cuatro nombres de campo.
    • En Encriptación de destino, elige Encriptación administrada por el cliente para encriptar la tabla con una clave de Cloud Key Management Service. Si dejas la configuración Default, BigQuery encripta los datos en reposo con una clave administrada por Google.
  7. Haz clic en Crear tabla (Create Table).

bq

Usa el comando bq load, especifica NEWLINE_DELIMITED_JSON con la marca --source_format y, además, incluye un URI de Cloud Storage. Puedes incluir un único URI, una lista de URI separados por comas o un URI que contenga un comodín. Proporciona el esquema intercalado con un archivo de definición de esquema o usa la detección automática de esquemas.

Proporciona la marca --location y establece el valor de tu ubicación (opcional).

Las siguientes son otras marcas opcionales:

  • --max_bad_records: Un número entero que especifica la cantidad máxima de registros incorrectos permitidos antes de que falle todo el trabajo. El valor predeterminado es 0. Como máximo, se muestran cinco errores de cualquier tipo, sin importar el valor --max_bad_records.
  • --ignore_unknown_values: Cuando se especifica, permite y también ignora valores extras no reconocidos en datos CSV o JSON.
  • --autodetect: Cuando se especifica, habilita la detección automática de esquemas para los datos de formato CSV y JSON.
  • --quote: El carácter de comillas que se usará para encerrar registros. El valor predeterminado es ". Para indicar que no hay ningún carácter de comilla, usa una string vacía.
  • --time_partitioning_type: Habilita las particiones basadas en el tiempo en una tabla y establece el tipo de partición. Por el momento el único valor posible es DAY, que genera una partición por día. Esta marca es opcional cuando se crea una tabla particionada en una columna DATE o TIMESTAMP.
  • --time_partitioning_expiration: Un número entero que especifica (en segundos) cuándo se debe borrar una partición basada en el tiempo. La hora de vencimiento se evalúa según la suma de la fecha de la partición en formato UTC más el valor del número entero.
  • --time_partitioning_field: La columna DATE o TIMESTAMP que se usa para crear una tabla particionada. Si la partición basada en el tiempo se habilita sin este valor, se creará una tabla particionada por tiempo de transferencia.
  • --require_partition_filter: Cuando se habilita esta opción, se solicita a los usuarios que incluyan una cláusula WHERE que especifique las particiones que se desean consultar. Exigir un filtro de partición puede reducir los costos y mejorar el rendimiento. Para obtener más información, lee Consulta tablas particionadas.
  • --clustering_fields: Es una lista separada por comas de hasta cuatro nombres de columna que se usa para crear una tabla agrupada en clústeres.
  • --destination_kms_key: Es la clave de Cloud KMS que se usa para encriptar los datos de la tabla.

    Para obtener más información sobre las tablas particionadas, consulta los siguientes artículos:

    Para obtener más información sobre las tablas agrupadas en clústeres, consulta el siguiente artículo:

    Para obtener más información sobre la encriptación de tablas, consulta el siguiente artículo:

Para cargar datos JSON en BigQuery, ingresa el siguiente comando:

bq --location=LOCATION load \
--source_format=FORMAT \
DATASET.TABLE \
PATH_TO_SOURCE \
SCHEMA

Reemplaza lo siguiente:

  • LOCATION: Es tu ubicación. La marca --location es opcional. Por ejemplo, si usas BigQuery en la región de Tokio, puedes configurar el valor de la marca como asia-northeast1. Puedes configurar un valor predeterminado para la ubicación mediante el archivo .bigqueryrc.
  • FORMAT: NEWLINE_DELIMITED_JSON.
  • DATASET: Es un conjunto de datos existente.
  • TABLE: Es el nombre de la tabla en la que se están cargando los datos.
  • PATH_TO_SOURCE: Es un URI de Cloud Storage completamente calificado o una lista de URI separados por comas. También se admiten comodines.
  • SCHEMA: Es un esquema válido. El esquema puede ser un archivo JSON local o se puede escribir intercalado como parte del comando. También puedes usar la marca --autodetect en lugar de proporcionar una definición de esquema.

Ejemplos:

El siguiente comando carga datos de gs://mybucket/mydata.json a una tabla llamada mytable en mydataset. El esquema se define en un archivo de esquema local llamado myschema.json.

    bq load \
    --source_format=NEWLINE_DELIMITED_JSON \
    mydataset.mytable \
    gs://mybucket/mydata.json \
    ./myschema.json

El siguiente comando carga datos de gs://mybucket/mydata.json a una tabla particionada por tiempo de transferencia llamada mytable en mydataset. El esquema se define en un archivo de esquema local llamado myschema.json.

    bq load \
    --source_format=NEWLINE_DELIMITED_JSON \
    --time_partitioning_type=DAY \
    mydataset.mytable \
    gs://mybucket/mydata.json \
    ./myschema.json

El siguiente comando carga datos de gs://mybucket/mydata.json a una tabla particionada llamada mytable en mydataset. La tabla está particionada en la columna mytimestamp. El esquema se define en un archivo de esquema local llamado myschema.json.

    bq load \
    --source_format=NEWLINE_DELIMITED_JSON \
    --time_partitioning_field mytimestamp \
    mydataset.mytable \
    gs://mybucket/mydata.json \
    ./myschema.json

El siguiente comando carga datos de gs://mybucket/mydata.json a una tabla llamada mytable en mydataset. El esquema se detecta de forma automática.

    bq load \
    --autodetect \
    --source_format=NEWLINE_DELIMITED_JSON \
    mydataset.mytable \
    gs://mybucket/mydata.json

El siguiente comando carga datos de gs://mybucket/mydata.json a una tabla llamada mytable en mydataset. El esquema se define intercalado en el formato FIELD:DATA_TYPE, FIELD:DATA_TYPE.

    bq load \
    --source_format=NEWLINE_DELIMITED_JSON \
    mydataset.mytable \
    gs://mybucket/mydata.json \
    qtr:STRING,sales:FLOAT,year:STRING

El siguiente comando carga datos de varios archivos en gs://mybucket/ en una tabla llamada mytable en mydataset. El URI de Cloud Storage usa un comodín. El esquema se detecta de forma automática.

    bq load \
    --autodetect \
    --source_format=NEWLINE_DELIMITED_JSON \
    mydataset.mytable \
    gs://mybucket/mydata*.json

El siguiente comando carga datos de varios archivos en gs://mybucket/ en una tabla llamada mytable en mydataset. El comando incluye una lista separada por comas de URI de Cloud Storage con comodines. El esquema se define en un archivo de esquema local llamado myschema.json.

    bq load \
    --source_format=NEWLINE_DELIMITED_JSON \
    mydataset.mytable \
    "gs://mybucket/00/*.json","gs://mybucket/01/*.json" \
    ./myschema.json

API

  1. Crea un trabajo load que haga referencia a los datos de origen almacenados en Cloud Storage.

  2. Especifica tu ubicación en la propiedad location de la sección jobReference del recurso de trabajo (opcional).

  3. La propiedad source URIs debe estar completamente calificada en el formato gs://BUCKET/OBJECT. Cada URI puede contener un carácter comodín “*”.

  4. Para especificar el formato de datos JSON, configura la propiedad sourceFormat como NEWLINE_DELIMITED_JSON.

  5. Para verificar el estado del trabajo, llama a jobs.get(JOB_ID*) y reemplaza JOB_ID por el ID del trabajo que muestra la solicitud inicial.

    • Si se muestra status.state = DONE, el trabajo se completó de forma correcta.
    • Si la propiedad status.errorResult está presente, la solicitud falló y ese objeto incluye información que describe lo que salió mal. Cuando una solicitud falla, no se crea ninguna tabla ni se cargan datos.
    • Si status.errorResult está ausente, el trabajo se completó con éxito, aunque puede haber algunos errores recuperables, como problemas cuando se importan algunas filas. Se enumeran los errores recuperables en la propiedad status.errors del objeto de trabajo que se muestra.

Notas sobre la API:

  • Los trabajos de carga son atómicos y coherentes. Es decir, si falla uno, ninguno de los datos estará disponible, y, si uno se realiza con éxito, todos los datos estarán disponibles.

  • Como práctica recomendada, genera un ID único y pásalo como jobReference.jobId cuando llames a jobs.insert para crear un trabajo de carga. Este enfoque es más resistente al fallo de la red porque el cliente puede sondear o reintentar con el ID de trabajo conocido.

  • Llamar a jobs.insert en un ID de trabajo determinado es idempotente. Puedes intentar tantas veces como desees en el mismo ID de trabajo y, como máximo, una de esas operaciones tendrá éxito.

C#

Antes de probar este ejemplo, sigue las instrucciones de configuración para C# incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Si deseas obtener más información, consulta la documentación de referencia de la API de BigQuery para C#.

Usa el método BigQueryClient.CreateLoadJob() para iniciar un trabajo de carga desde Cloud Storage. Para usar JSON delimitado por saltos de línea, crea un objeto CreateLoadJobOptions y establece su propiedad SourceFormat como FileFormat.NewlineDelimitedJson.


using Google.Apis.Bigquery.v2.Data;
using Google.Cloud.BigQuery.V2;
using System;

public class BigQueryLoadTableGcsJson
{
    public void LoadTableGcsJson(
        string projectId = "your-project-id",
        string datasetId = "your_dataset_id"
    )
    {
        BigQueryClient client = BigQueryClient.Create(projectId);
        var gcsURI = "gs://cloud-samples-data/bigquery/us-states/us-states.json";
        var dataset = client.GetDataset(datasetId);
        var schema = new TableSchemaBuilder {
            { "name", BigQueryDbType.String },
            { "post_abbr", BigQueryDbType.String }
        }.Build();
        TableReference destinationTableRef = dataset.GetTableReference(
            tableId: "us_states");
        // Create job configuration
        var jobOptions = new CreateLoadJobOptions()
        {
            SourceFormat = FileFormat.NewlineDelimitedJson
        };
        // Create and run job
        BigQueryJob loadJob = client.CreateLoadJob(
            sourceUri: gcsURI, destination: destinationTableRef,
            schema: schema, options: jobOptions);
        loadJob.PollUntilCompleted();  // Waits for the job to complete.
        // Display the number of rows uploaded
        BigQueryTable table = client.GetTable(destinationTableRef);
        Console.WriteLine(
            $"Loaded {table.Resource.NumRows} rows to {table.FullyQualifiedId}");
    }
}

Go

Antes de probar este ejemplo, sigue las instrucciones de configuración para Go que se encuentran en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Si deseas obtener más información, consulta la documentación de referencia de la API de BigQuery para Go.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// importJSONExplicitSchema demonstrates loading newline-delimited JSON data from Cloud Storage
// into a BigQuery table and providing an explicit schema for the data.
func importJSONExplicitSchema(projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %v", err)
	}
	defer client.Close()

	gcsRef := bigquery.NewGCSReference("gs://cloud-samples-data/bigquery/us-states/us-states.json")
	gcsRef.SourceFormat = bigquery.JSON
	gcsRef.Schema = bigquery.Schema{
		{Name: "name", Type: bigquery.StringFieldType},
		{Name: "post_abbr", Type: bigquery.StringFieldType},
	}
	loader := client.Dataset(datasetID).Table(tableID).LoaderFrom(gcsRef)
	loader.WriteDisposition = bigquery.WriteEmpty

	job, err := loader.Run(ctx)
	if err != nil {
		return err
	}
	status, err := job.Wait(ctx)
	if err != nil {
		return err
	}

	if status.Err() != nil {
		return fmt.Errorf("job completed with error: %v", status.Err())
	}
	return nil
}

Java

Antes de probar este ejemplo, sigue las instrucciones de configuración para Java que se encuentran en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Si deseas obtener más información, consulta la documentación de referencia de la API de BigQuery para Java.

Usa el método LoadJobConfiguration.builder(tableId, sourceUri) para iniciar un trabajo de carga desde Cloud Storage. Para usar JSON delimitado por saltos de línea usa LoadJobConfiguration.setFormatOptions(FormatOptions.json()).

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Field;
import com.google.cloud.bigquery.FormatOptions;
import com.google.cloud.bigquery.Job;
import com.google.cloud.bigquery.JobInfo;
import com.google.cloud.bigquery.LoadJobConfiguration;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardSQLTypeName;
import com.google.cloud.bigquery.TableId;

// Sample to load JSON data from Cloud Storage into a new BigQuery table
public class LoadJsonFromGCS {

  public static void runLoadJsonFromGCS() {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    String sourceUri = "gs://cloud-samples-data/bigquery/us-states/us-states.json";
    Schema schema =
        Schema.of(
            Field.of("name", StandardSQLTypeName.STRING),
            Field.of("post_abbr", StandardSQLTypeName.STRING));
    loadJsonFromGCS(datasetName, tableName, sourceUri, schema);
  }

  public static void loadJsonFromGCS(
      String datasetName, String tableName, String sourceUri, Schema schema) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);
      LoadJobConfiguration loadConfig =
          LoadJobConfiguration.newBuilder(tableId, sourceUri)
              .setFormatOptions(FormatOptions.json())
              .setSchema(schema)
              .build();

      // Load data from a GCS JSON file into the table
      Job job = bigquery.create(JobInfo.of(loadConfig));
      // Blocks until this load table job completes its execution, either failing or succeeding.
      job = job.waitFor();
      if (job.isDone()) {
        System.out.println("Json from GCS successfully loaded in a table");
      } else {
        System.out.println(
            "BigQuery was unable to load into the table due to an error:"
                + job.getStatus().getError());
      }
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Column not added during load append \n" + e.toString());
    }
  }
}

Node.js

Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js que se encuentran en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Si deseas obtener más información, consulta la documentación de referencia de la API de BigQuery para Node.js.

// Import the Google Cloud client libraries
const {BigQuery} = require('@google-cloud/bigquery');
const {Storage} = require('@google-cloud/storage');

// Instantiate clients
const bigquery = new BigQuery();
const storage = new Storage();

/**
 * This sample loads the json file at
 * https://storage.googleapis.com/cloud-samples-data/bigquery/us-states/us-states.json
 *
 * TODO(developer): Replace the following lines with the path to your file.
 */
const bucketName = 'cloud-samples-data';
const filename = 'bigquery/us-states/us-states.json';

async function loadJSONFromGCS() {
  // Imports a GCS file into a table with manually defined schema.

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = "my_dataset";
  // const tableId = "my_table";

  // Configure the load job. For full list of options, see:
  // https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationLoad
  const metadata = {
    sourceFormat: 'NEWLINE_DELIMITED_JSON',
    schema: {
      fields: [
        {name: 'name', type: 'STRING'},
        {name: 'post_abbr', type: 'STRING'},
      ],
    },
    location: 'US',
  };

  // Load data from a Google Cloud Storage file into the table
  const [job] = await bigquery
    .dataset(datasetId)
    .table(tableId)
    .load(storage.bucket(bucketName).file(filename), metadata);
  // load() waits for the job to finish
  console.log(`Job ${job.id} completed.`);

  // Check the job's status for errors
  const errors = job.status.errors;
  if (errors && errors.length > 0) {
    throw errors;
  }
}

PHP

Antes de probar este ejemplo, sigue las instrucciones de configuración para PHP incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Si deseas obtener más información, consulta la documentación de referencia de la API de BigQuery para PHP.

use Google\Cloud\BigQuery\BigQueryClient;
use Google\Cloud\Core\ExponentialBackoff;

/** Uncomment and populate these variables in your code */
// $projectId  = 'The Google project ID';
// $datasetId  = 'The BigQuery dataset ID';

// instantiate the bigquery table service
$bigQuery = new BigQueryClient([
    'projectId' => $projectId,
]);
$dataset = $bigQuery->dataset($datasetId);
$table = $dataset->table('us_states');

// create the import job
$gcsUri = 'gs://cloud-samples-data/bigquery/us-states/us-states.json';
$schema = [
    'fields' => [
        ['name' => 'name', 'type' => 'string'],
        ['name' => 'post_abbr', 'type' => 'string']
    ]
];
$loadConfig = $table->loadFromStorage($gcsUri)->schema($schema)->sourceFormat('NEWLINE_DELIMITED_JSON');
$job = $table->runJob($loadConfig);
// poll the job until it is complete
$backoff = new ExponentialBackoff(10);
$backoff->execute(function () use ($job) {
    print('Waiting for job to complete' . PHP_EOL);
    $job->reload();
    if (!$job->isComplete()) {
        throw new Exception('Job has not yet completed', 500);
    }
});
// check if the job has errors
if (isset($job->info()['status']['errorResult'])) {
    $error = $job->info()['status']['errorResult']['message'];
    printf('Error running job: %s' . PHP_EOL, $error);
} else {
    print('Data imported successfully' . PHP_EOL);
}

Python

Antes de probar esta muestra, sigue las instrucciones de configuración para Python incluidas en la Guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Si deseas obtener más información, consulta la documentación de referencia de la API de BigQuery para Python.

Usa el método Client.load_table_from_uri() para iniciar un trabajo de carga desde Cloud Storage. Para usar JSON delimitado por saltos de línea, configura la propiedad LoadJobConfig.source_format en la string NEWLINE_DELIMITED_JSON y pasa la configuración del trabajo como el argumento job_config para el método load_table_from_uri().

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name"

job_config = bigquery.LoadJobConfig(
    schema=[
        bigquery.SchemaField("name", "STRING"),
        bigquery.SchemaField("post_abbr", "STRING"),
    ],
    source_format=bigquery.SourceFormat.NEWLINE_DELIMITED_JSON,
)
uri = "gs://cloud-samples-data/bigquery/us-states/us-states.json"

load_job = client.load_table_from_uri(
    uri,
    table_id,
    location="US",  # Must match the destination dataset location.
    job_config=job_config,
)  # Make an API request.

load_job.result()  # Waits for the job to complete.

destination_table = client.get_table(table_id)
print("Loaded {} rows.".format(destination_table.num_rows))

Ruby

Antes de probar este ejemplo, sigue las instrucciones de configuración para Ruby incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. A fin de obtener más información, consulta la documentación de referencia de la API de BigQuery para Ruby.

Usa el método Dataset.load_job() para iniciar un trabajo de carga desde Cloud Storage. Para usar JSON delimitado por saltos de línea, establece el parámetro format como "json".

require "google/cloud/bigquery"

def load_table_gcs_json dataset_id = "your_dataset_id"
  bigquery = Google::Cloud::Bigquery.new
  dataset  = bigquery.dataset dataset_id
  gcs_uri  = "gs://cloud-samples-data/bigquery/us-states/us-states.json"
  table_id = "us_states"

  load_job = dataset.load_job table_id, gcs_uri, format: "json" do |schema|
    schema.string "name"
    schema.string "post_abbr"
  end
  puts "Starting job #{load_job.job_id}"

  load_job.wait_until_done!  # Waits for table load to complete.
  puts "Job finished."

  table = dataset.table(table_id)
  puts "Loaded #{table.rows_count} rows to table #{table.id}"
end

Carga datos JSON anidados y repetidos

BigQuery admite la carga de datos anidados y repetidos de formatos de origen que admiten esquemas basados en objetos, como JSON, Avro, ORC, Parquet, Firestore y Datastore.

Debe aparecer un objeto JSON, lo que incluye los campos anidados o repetidos en cada línea.

El siguiente ejemplo presenta datos anidados o repetidos de muestra. Esta tabla contiene información sobre las personas. Consta de los siguientes campos:

  • id
  • first_name
  • last_name
  • dob (fecha de nacimiento)
  • addresses (un campo repetido y anidado)
    • addresses.status (actual o anterior)
    • addresses.address
    • addresses.city
    • addresses.state
    • addresses.zip
    • addresses.numberOfYears (años en la dirección)

El archivo de datos JSON debería ser similar a lo que se muestra a continuación. Observa que el campo de dirección contiene un arreglo de valores (indicado por [ ]).

{"id":"1","first_name":"John","last_name":"Doe","dob":"1968-01-22","addresses":[{"status":"current","address":"123 First Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456 Main Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]}
{"id":"2","first_name":"Jane","last_name":"Doe","dob":"1980-10-16","addresses":[{"status":"current","address":"789 Any Avenue","city":"New York","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321 Main Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}

El esquema para esta tabla se vería como el siguiente:

[
    {
        "name": "id",
        "type": "STRING",
        "mode": "NULLABLE"
    },
    {
        "name": "first_name",
        "type": "STRING",
        "mode": "NULLABLE"
    },
    {
        "name": "last_name",
        "type": "STRING",
        "mode": "NULLABLE"
    },
    {
        "name": "dob",
        "type": "DATE",
        "mode": "NULLABLE"
    },
    {
        "name": "addresses",
        "type": "RECORD",
        "mode": "REPEATED",
        "fields": [
            {
                "name": "status",
                "type": "STRING",
                "mode": "NULLABLE"
            },
            {
                "name": "address",
                "type": "STRING",
                "mode": "NULLABLE"
            },
            {
                "name": "city",
                "type": "STRING",
                "mode": "NULLABLE"
            },
            {
                "name": "state",
                "type": "STRING",
                "mode": "NULLABLE"
            },
            {
                "name": "zip",
                "type": "STRING",
                "mode": "NULLABLE"
            },
            {
                "name": "numberOfYears",
                "type": "STRING",
                "mode": "NULLABLE"
            }
        ]
    }
]

Para obtener más información sobre cómo especificar un esquema anidado y repetido, consulta Especifica columnas anidadas y repetidas.

Adjunta datos JSON a una tabla o reemplázala

Puedes cargar datos adicionales en una tabla desde archivos de origen o cuando adjuntas resultados de consultas.

En la consola y en la IU web clásica de BigQuery, usa la opción de Preferencia de escritura (Write preference) para especificar qué acción tomar cuando cargues datos desde un archivo de origen o desde un resultado de consulta.

Cuando cargas datos adicionales en una tabla, tienes las siguientes opciones:

Opción de Cloud Console Opción de IU web clásica Marca de la herramienta de línea de comandos de bq Propiedad de la API de BigQuery Descripción
Escribir si está vacía (Write if empty) Escribir si está vacía (Write if empty) Ninguna WRITE_EMPTY Solo escribe los datos si la tabla está vacía.
Agregar a la tabla Agregar a la tabla --noreplace o --replace=false; si no se especifica --[no]replace, la opción predeterminada es agregar WRITE_APPEND Agrega los datos al final de la tabla (predeterminado).
Reemplaza una tabla Reemplaza una tabla --replace o --replace=true WRITE_TRUNCATE Borra todos los datos existentes de una tabla antes de escribir los datos nuevos.

Si cargas datos en una tabla existente, el trabajo de carga puede agregar los datos o reemplazar la tabla.

Puedes agregar o reemplazar una tabla con una de las siguientes opciones:

  • Cloud Console o la IU web clásica
  • El comando bq load de la herramienta de línea de comandos de bq
  • El método de API jobs.insert y la configuración de un trabajo load
  • Las bibliotecas cliente

Console

  1. Abre la página de BigQuery en Cloud Console.

    Ir a la página BigQuery

  2. En el panel de navegación, en la sección Recursos, expande tu proyecto de Cloud y selecciona un conjunto de datos.

  3. En el panel de detalles, haz clic en Crear tabla (Create table). El proceso para agregar y reemplazar datos en un trabajo de carga es el mismo que el de crear una tabla en un trabajo de carga.

    Crear tabla.

  4. En la página Crear tabla, en la sección Fuente haz lo siguiente:

    • En Crear tabla desde (Create table from), selecciona Cloud Storage.

    • En el campo de origen, busca o ingresa el URI de Cloud Storage. Ten en cuenta que no puedes incluir varios URI en Cloud Console, pero se admiten comodines. El depósito de Cloud Storage debe encontrarse en la misma ubicación que el conjunto de datos que contiene la tabla que agregas o reemplazas.

      Seleccionar archivo.

    • En Formato de archivo (File format), selecciona JSON (delimitado por saltos de línea).

  5. En la sección Destination (Destino) de la página Create table (Crear tabla), haz lo siguiente:

    • En Nombre del conjunto de datos (Dataset name), selecciona el conjunto de datos que corresponda.

      Seleccionar conjunto de datos.

    • En el campo Nombre de la tabla, ingresa el nombre de la tabla que quieres agregar o reemplazar en BigQuery.

    • Verifica que Table type (Tipo de tabla) esté establecido en Native table (Tabla nativa).

  6. En la sección Esquema, en Detección automática, marca la opción Esquema y parámetros de entrada para habilitar la detección automática de esquemas. También puedes ingresar de forma manual la definición de esquema, como se indica a continuación:

    • Habilita Editar como texto y, luego, ingresa el esquema de la tabla como un arreglo JSON.

      Agregar esquema como arreglo JSON.

    • Usa Agregar campo (Add field) para ingresar el esquema de forma manual.

      Agregar definición de esquema con el botón Agregar campo.

  7. En Configuración de partición y agrupamiento en clústeres (Partition and cluster settings), deja los valores predeterminados. No puedes agregar datos a una tabla ni reemplazarla para convertirla en una tabla particionada o agrupada en clústeres; Cloud Console no admite agregar datos a tablas particionadas o agrupadas en clústeres ni reemplazarlas en un trabajo de carga.

  8. Haz clic en Opciones avanzadas (Advanced options).

    • En Preferencia de escritura (Write preference), elige Agregar a la tabla (Append to table) o Reemplazar tabla (Overwrite table).
    • En Cantidad de errores permitidos: (Number of errors allowed), acepta el valor predeterminado de 0 o ingresa la cantidad máxima de filas con errores que pueden ignorarse. Si la cantidad de filas con errores excede este valor, el trabajo generará un mensaje invalid y fallará.
    • En Valores desconocidos, marca Ignorar valores desconocidos para ignorar cualquier valor en una fila que no esté presente en el esquema de la tabla.
    • En Encriptación, haz clic en Clave administrada por el cliente para usar una clave de Cloud Key Management Service. Si dejas establecida la configuración Clave administrada por Google, BigQuery encripta los datos en reposo.

      Reemplazar tabla.

  9. Haz clic en Crear tabla.

IU clásica

  1. Ve a la IU web de BigQuery.
    Ir a la IU web de BigQuery

  2. En el panel de navegación, coloca el cursor sobre un conjunto de datos, haz clic en el ícono de flecha hacia abajo Ícono de flecha hacia abajo. y, luego, en Crear tabla nueva. El proceso para agregar y reemplazar datos en un trabajo de carga es el mismo que el de crear una tabla en un trabajo de carga.

  3. En la sección Datos de origen (Source Data) de la página Crear tabla (Create Table), sigue estos pasos:

    • En Ubicación (Location), selecciona Cloud Storage y, en el campo de origen, ingresa el URI de Cloud Storage. Ten en cuenta que no puedes incluir varios URI en la IU, pero sí se admiten comodines. El depósito de Cloud Storage debe encontrarse en la misma ubicación que el conjunto de datos que contiene la tabla que adjuntas o reemplazas.
    • En Formato de archivo, selecciona JSON (Delimitado por saltos de línea).
  4. En la sección Destination table (Tabla de destino) de la página Create Table (Crear tabla), sigue estos pasos:

    • En Nombre de la tabla (Table name), selecciona el conjunto de datos que corresponda y, en el campo de nombre de la tabla, ingresa el nombre de la tabla a la que quieres agregarle datos o que quieres reemplazar.
    • Verifica que Tipo de tabla (Table type) esté establecido en Tabla nativa (Native table).
  5. En la sección Esquema (Schema), ingresa la definición del esquema.

    • Para los archivos JSON, puedes marcar la opción Detección automática (Automatically detect) a fin de habilitar la detección automática de esquemas.

      Vínculo de detección automática.

    • También puedes ingresar la información del esquema de forma manual como se indica a continuación:

      • Haz clic en Editar como texto e ingresa el esquema de la tabla como un arreglo JSON:

        Agregar esquema como arreglo JSON.

      • Usa Agregar campo (Add Field) para ingresar el esquema de forma manual:

        Agregar esquema con el botón Agregar campo.

  6. En la sección Opciones (Options), sigue estos pasos:

    • En Cantidad de errores permitidos: (Number of errors allowed), acepta el valor predeterminado de 0 o ingresa la cantidad máxima de filas con errores que pueden ignorarse. Si la cantidad de filas con errores excede este valor, el trabajo generará un mensaje invalid y fallará.
    • En Preferencia de escritura (Write preference), elige Agregar a la tabla (Append to table) o Reemplazar tabla (Overwrite table).
    • Deja los valores predeterminados en Tipo de partición (Partitioning Type), Campo de partición (Partitioning Field), Exigir filtro de partición (Require partition filter) y Campos de agrupamiento en clústeres (Clustering Fields). No puedes agregar datos a una tabla ni reemplazarla para convertirla en una tabla particionada o agrupada en clústeres; la IU web no admite agregar datos a tablas particionadas o agrupadas en clústeres ni reemplazarlas en un trabajo de carga.
    • En Encriptación de destino, elige Encriptación administrada por el cliente para encriptar la tabla con una clave de Cloud Key Management Service. Si dejas la configuración Default, BigQuery encripta los datos en reposo con una clave administrada por Google.
  7. Haz clic en Crear tabla.

bq

Usa el comando bq load, especifica NEWLINE_DELIMITED_JSON con la marca --source_format y, además, incluye un URI de Cloud Storage. Puedes incluir un único URI, una lista de URI separados por comas o un URI que contenga un comodín.

Proporciona el esquema intercalado con un archivo de definición de esquema o usa la detección automática de esquemas.

Especifica la marca --replace para reemplazar la tabla. Usa la marca --noreplace para adjuntar datos a la tabla. Si no se especifica ninguna marca, se agregan datos de manera predeterminada.

Es posible modificar el esquema de la tabla cuando adjuntas datos a ella o la reemplazas. Para obtener más información sobre los cambios de esquema admitidos durante una operación de carga, consulta Modifica esquemas de tablas.

Proporciona la marca --location y establece el valor de tu ubicación (opcional).

Las siguientes son otras marcas opcionales:

  • --max_bad_records: Un número entero que especifica la cantidad máxima de registros incorrectos permitidos antes de que falle todo el trabajo. El valor predeterminado es 0. Como máximo, se muestran cinco errores de cualquier tipo, sin importar el valor --max_bad_records.
  • --ignore_unknown_values: Cuando se especifica, permite y también ignora valores extras no reconocidos en datos CSV o JSON.
  • --autodetect: Cuando se especifica, se habilita la detección automática de esquemas para los datos de formato CSV y JSON.
  • --destination_kms_key: Es la clave de Cloud KMS para la encriptación de los datos de la tabla.
bq --location=LOCATION load \
--[no]replace \
--source_format=FORMAT \
DATASET.TABLE \
PATH_TO_SOURCE \
SCHEMA

Reemplaza lo siguiente:

  • LOCATION: Es tu ubicación. La marca --location es opcional. Puedes configurar un valor predeterminado para la ubicación mediante el archivo .bigqueryrc.
  • FORMAT: NEWLINE_DELIMITED_JSON.
  • DATASET: Es un conjunto de datos existente.
  • TABLE: Es el nombre de la tabla en la que se están cargando los datos.
  • PATH_TO_SOURCE: Es un URI de Cloud Storage completamente calificado o una lista de URI separados por comas. También se admiten comodines.
  • SCHEMA: Es un esquema válido. El esquema puede ser un archivo JSON local o se puede escribir intercalado como parte del comando. También puedes usar la marca --autodetect en lugar de proporcionar una definición de esquema.

Ejemplos:

Con el siguiente comando, se cargan datos de gs://mybucket/mydata.json y se reemplazan los datos de una tabla llamada mytable en mydataset. El esquema se define mediante la detección automática de esquemas.

    bq load \
    --autodetect \
    --replace \
    --source_format=NEWLINE_DELIMITED_JSON \
    mydataset.mytable \
    gs://mybucket/mydata.json

Con el siguiente comando, se cargan datos de gs://mybucket/mydata.json y se adjuntan datos a una tabla llamada mytable en mydataset. El esquema se define mediante un archivo de esquema JSON: myschema.json.

    bq load \
    --noreplace \
    --source_format=NEWLINE_DELIMITED_JSON \
    mydataset.mytable \
    gs://mybucket/mydata.json \
    ./myschema.json

API

  1. Crea un trabajo load que haga referencia a los datos de origen almacenados en Cloud Storage.

  2. Especifica tu ubicación en la propiedad location de la sección jobReference del recurso de trabajo (opcional).

  3. La propiedad source URIs debe estar completamente calificada en el formato gs://BUCKET/OBJECT. Puedes incluir varios URI en una lista separada por comas. Ten en cuenta que también se admiten comodines.

  4. Para especificar el formato de los datos, establece la propiedad configuration.load.sourceFormat en NEWLINE_DELIMITED_JSON.

  5. Para especificar la preferencia de escritura, establece la propiedad configuration.load.writeDisposition en WRITE_TRUNCATE o WRITE_APPEND.

Go

Antes de probar este ejemplo, sigue las instrucciones de configuración para Go que se encuentran en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Si deseas obtener más información, consulta la documentación de referencia de la API de BigQuery para Go.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// importJSONTruncate demonstrates loading data from newline-delimeted JSON data in Cloud Storage
// and overwriting/truncating data in the existing table.
func importJSONTruncate(projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %v", err)
	}
	defer client.Close()

	gcsRef := bigquery.NewGCSReference("gs://cloud-samples-data/bigquery/us-states/us-states.json")
	gcsRef.SourceFormat = bigquery.JSON
	gcsRef.AutoDetect = true
	loader := client.Dataset(datasetID).Table(tableID).LoaderFrom(gcsRef)
	loader.WriteDisposition = bigquery.WriteTruncate

	job, err := loader.Run(ctx)
	if err != nil {
		return err
	}
	status, err := job.Wait(ctx)
	if err != nil {
		return err
	}

	if status.Err() != nil {
		return fmt.Errorf("job completed with error: %v", status.Err())
	}

	return nil
}

Java

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Field;
import com.google.cloud.bigquery.FormatOptions;
import com.google.cloud.bigquery.Job;
import com.google.cloud.bigquery.JobInfo;
import com.google.cloud.bigquery.LoadJobConfiguration;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardSQLTypeName;
import com.google.cloud.bigquery.TableId;

// Sample to overwrite the BigQuery table data by loading a JSON file from GCS
public class LoadJsonFromGCSTruncate {

  public static void runLoadJsonFromGCSTruncate() {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    String sourceUri = "gs://cloud-samples-data/bigquery/us-states/us-states.json";
    Schema schema =
        Schema.of(
            Field.of("name", StandardSQLTypeName.STRING),
            Field.of("post_abbr", StandardSQLTypeName.STRING));
    loadJsonFromGCSTruncate(datasetName, tableName, sourceUri, schema);
  }

  public static void loadJsonFromGCSTruncate(
      String datasetName, String tableName, String sourceUri, Schema schema) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);
      LoadJobConfiguration loadConfig =
          LoadJobConfiguration.newBuilder(tableId, sourceUri)
              .setFormatOptions(FormatOptions.json())
              // Set the write disposition to overwrite existing table data
              .setWriteDisposition(JobInfo.WriteDisposition.WRITE_TRUNCATE)
              .setSchema(schema)
              .build();

      // Load data from a GCS JSON file into the table
      Job job = bigquery.create(JobInfo.of(loadConfig));
      // Blocks until this load table job completes its execution, either failing or succeeding.
      job = job.waitFor();
      if (job.isDone()) {
        System.out.println("Table is successfully overwritten by JSON file loaded from GCS");
      } else {
        System.out.println(
            "BigQuery was unable to load into the table due to an error:"
                + job.getStatus().getError());
      }
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Column not added during load append \n" + e.toString());
    }
  }
}

Node.js

Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js que se encuentran en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Si deseas obtener más información, consulta la documentación de referencia de la API de BigQuery para Node.js.

// Import the Google Cloud client libraries
const {BigQuery} = require('@google-cloud/bigquery');
const {Storage} = require('@google-cloud/storage');

// Instantiate clients
const bigquery = new BigQuery();
const storage = new Storage();

/**
 * This sample loads the JSON file at
 * https://storage.googleapis.com/cloud-samples-data/bigquery/us-states/us-states.json
 *
 * TODO(developer): Replace the following lines with the path to your file.
 */
const bucketName = 'cloud-samples-data';
const filename = 'bigquery/us-states/us-states.json';

async function loadJSONFromGCSTruncate() {
  /**
   * Imports a GCS file into a table and overwrites
   * table data if table already exists.
   */

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = "my_dataset";
  // const tableId = "my_table";

  // Configure the load job. For full list of options, see:
  // https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationLoad
  const metadata = {
    sourceFormat: 'NEWLINE_DELIMITED_JSON',
    schema: {
      fields: [
        {name: 'name', type: 'STRING'},
        {name: 'post_abbr', type: 'STRING'},
      ],
    },
    // Set the write disposition to overwrite existing table data.
    writeDisposition: 'WRITE_TRUNCATE',
  };

  // Load data from a Google Cloud Storage file into the table
  const [job] = await bigquery
    .dataset(datasetId)
    .table(tableId)
    .load(storage.bucket(bucketName).file(filename), metadata);
  // load() waits for the job to finish
  console.log(`Job ${job.id} completed.`);

  // Check the job's status for errors
  const errors = job.status.errors;
  if (errors && errors.length > 0) {
    throw errors;
  }
}

PHP

Antes de probar este ejemplo, sigue las instrucciones de configuración para PHP incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Si deseas obtener más información, consulta la documentación de referencia de la API de BigQuery para PHP.

use Google\Cloud\BigQuery\BigQueryClient;
use Google\Cloud\Core\ExponentialBackoff;

/** Uncomment and populate these variables in your code */
// $projectId = 'The Google project ID';
// $datasetId = 'The BigQuery dataset ID';
// $tableID = 'The BigQuery table ID';

// instantiate the bigquery table service
$bigQuery = new BigQueryClient([
    'projectId' => $projectId,
]);
$table = $bigQuery->dataset($datasetId)->table($tableId);

// create the import job
$gcsUri = 'gs://cloud-samples-data/bigquery/us-states/us-states.json';
$loadConfig = $table->loadFromStorage($gcsUri)->sourceFormat('NEWLINE_DELIMITED_JSON')->writeDisposition('WRITE_TRUNCATE');
$job = $table->runJob($loadConfig);

// poll the job until it is complete
$backoff = new ExponentialBackoff(10);
$backoff->execute(function () use ($job) {
    print('Waiting for job to complete' . PHP_EOL);
    $job->reload();
    if (!$job->isComplete()) {
        throw new Exception('Job has not yet completed', 500);
    }
});

// check if the job has errors
if (isset($job->info()['status']['errorResult'])) {
    $error = $job->info()['status']['errorResult']['message'];
    printf('Error running job: %s' . PHP_EOL, $error);
} else {
    print('Data imported successfully' . PHP_EOL);
}

Python

Para reemplazar las filas de una tabla existente, configura la propiedad LoadJobConfig.write_disposition en la string WRITE_TRUNCATE.

Antes de probar esta muestra, sigue las instrucciones de configuración para Python incluidas en la Guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Si deseas obtener más información, consulta la documentación de referencia de la API de BigQuery para Python.

import six

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name

job_config = bigquery.LoadJobConfig(
    schema=[
        bigquery.SchemaField("name", "STRING"),
        bigquery.SchemaField("post_abbr", "STRING"),
    ],
)

body = six.BytesIO(b"Washington,WA")
client.load_table_from_file(body, table_id, job_config=job_config).result()
previous_rows = client.get_table(table_id).num_rows
assert previous_rows > 0

job_config = bigquery.LoadJobConfig(
    write_disposition=bigquery.WriteDisposition.WRITE_TRUNCATE,
    source_format=bigquery.SourceFormat.NEWLINE_DELIMITED_JSON,
)

uri = "gs://cloud-samples-data/bigquery/us-states/us-states.json"
load_job = client.load_table_from_uri(
    uri, table_id, job_config=job_config
)  # Make an API request.

load_job.result()  # Waits for the job to complete.

destination_table = client.get_table(table_id)
print("Loaded {} rows.".format(destination_table.num_rows))

Ruby

Para reemplazar las filas de una tabla existente, establece el parámetro write de Table.load_job() como "WRITE_TRUNCATE".

Antes de probar este ejemplo, sigue las instrucciones de configuración para Ruby incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. A fin de obtener más información, consulta la documentación de referencia de la API de BigQuery para Ruby.

require "google/cloud/bigquery"

def load_table_gcs_json_truncate(
    dataset_id = "your_dataset_id",
    table_id   = "your_table_id"
  )
  bigquery = Google::Cloud::Bigquery.new
  dataset  = bigquery.dataset dataset_id
  gcs_uri  = "gs://cloud-samples-data/bigquery/us-states/us-states.json"

  load_job = dataset.load_job table_id,
                              gcs_uri,
                              format: "json",
                              write:  "truncate"
  puts "Starting job #{load_job.job_id}"

  load_job.wait_until_done!  # Waits for table load to complete.
  puts "Job finished."

  table = dataset.table(table_id)
  puts "Loaded #{table.rows_count} rows to table #{table.id}"
end

Carga datos JSON con partición de subárbol

BigQuery admite la carga de datos JSON con partición de subárbol almacenados en Cloud Storage y propaga las columnas con partición de subárbol en la tabla administrada de destino de BigQuery. Para obtener más información, consulta Carga datos con particiones externas.

Detalles de la carga de datos JSON

En esta sección, se describe cómo BigQuery analiza varios tipos de datos cuando se cargan datos JSON.

Booleano. BigQuery puede analizar cualquiera de los siguientes pares para datos booleanos: 1 o 0, true o false, t o f, yes o no, y o n (todos distinguen entre mayúsculas y minúsculas). La detección automática de esquemas detectará de forma automática cualquiera de estas opciones, excepto 0 y 1.

Fecha. Las columnas con tipos DATE (fecha) deben tener el formato YYYY-MM-DD.

Fecha y hora. Las columnas con los tipos DATETIME (fecha y hora) deben tener el formato YYYY-MM-DD HH:MM:SS[.SSSSSS].

Hora. Las columnas con tipos TIME (hora) deben tener el formato HH:MM:SS[.SSSSSS].

Marca de tiempo. BigQuery acepta una variedad de formatos de marca de tiempo. La marca de tiempo debe incluir una parte de la fecha y una de la hora.

  • La parte de la fecha puede tener el formato YYYY-MM-DD o YYYY/MM/DD.

  • La parte de la marca de tiempo debe tener el formato HH:MM[:SS[.SSSSSS]] (los segundos y las fracciones de segundos son opcionales).

  • La fecha y la hora deben estar separadas por un espacio o “T”.

  • De forma opcional, la fecha y la hora pueden estar seguidas por una compensación UTC o el designador de zona UTC (Z). Para obtener más información, consulta Zonas horarias.

Por ejemplo, cualquiera de los siguientes son valores de marca de tiempo válidos:

  • 2018-08-19 12:11
  • 2018-08-19 12:11:35
  • 2018-08-19 12:11:35.22
  • 2018/08/19 12:11
  • 2018-07-05 12:54:00 UTC
  • 2018-08-19 07:11:35.220 -05:00
  • 2018-08-19T12:11:35.220Z

Si proporcionas un esquema, BigQuery también acepta la hora de Unix para los valores de marca de tiempo. Sin embargo, la detección automática de esquemas no detectará este caso y tratará el valor como un tipo numérico o de string en su lugar.

Ejemplos de valores de marca de tiempo de hora de Unix:

  • 1534680695
  • 1.534680695e11

Opciones JSON

Para cambiar la forma en que BigQuery analiza los datos JSON, especifica opciones adicionales en la consola, la IU clásica, la interfaz de línea de comandos, la API o las bibliotecas cliente.

Opción JSON Opción de Console Opción de la IU clásica Marca de línea de comandos Propiedad de la API de BigQuery Descripción
Cantidad de registros incorrectos permitidos Cantidad de errores permitidos Cantidad de errores permitidos --max_bad_records maxBadRecords La cantidad máxima de registros erróneos que BigQuery puede ignorar cuando ejecuta el trabajo (opcional). Si la cantidad de registros erróneos excede este valor, se muestra un error no válido en el resultado del trabajo. El valor predeterminado es 0, por lo que es obligatorio que todos los registros sean válidos.
Valores desconocidos Ignorar valores desconocidos Ignorar valores desconocidos --ignore_unknown_values ignoreUnknownValues Indica si BigQuery debe permitir valores adicionales que no estén representados en el esquema de la tabla (opcional). Si es verdadero, los valores adicionales se ignoran. Si es falso, los registros con columnas adicionales se tratan como registros incorrectos, y si hay demasiados, se muestra un error no válido en el resultado del trabajo. El valor predeterminado es falso. La propiedad “sourceFormat” determina qué trata BigQuery como un valor adicional; CSV: columnas finales, JSON: valores con nombres que no coinciden con ningún nombre de columna.