Modellleistung durch Hyperparameter-Abstimmung verbessern


In dieser Anleitung erfahren Sie, wie Sie mit der Hyperparameter-Abstimmung in BigQuery ML ein Modell für maschinelles Lernen optimieren und seine Leistung verbessern.

Sie führen die Hyperparameter-Abstimmung durch Angabe der Option NUM_TRIALS der CREATE MODEL-Anweisung in Kombination mit anderen modellspezifischen Optionen durch. Wenn Sie diese Optionen festlegen, trainiert BigQuery ML mehrere Versionen oder Tests des Modells, jeweils mit leicht unterschiedlichen Parametern, und gibt den Test mit der besten Leistung zurück.

In dieser Anleitung wird die öffentliche Beispieltabelle tlc_yellow_trips_2018 verwendet, die Informationen zu Taxifahrten in New York City im Jahr 2018 enthält.

Lernziele

In dieser Anleitung werden Sie durch die folgenden Aufgaben geführt:

  • Mit der Anweisung CREATE MODEL ein lineares Regressionsmodell als Referenz erstellen
  • Bewertung des Basismodells mit der ML.EVALUATE-Funktion
  • Mit der Anweisung CREATE MODEL mit Optionen zur Hyperparameter-Abstimmung werden 20 Tests für ein lineares Regressionsmodell trainiert.
  • Test mit der Funktion ML.TRIAL_INFO überprüfen
  • Die Tests mit der Funktion ML.EVALUATE auswerten.
  • Mit der Funktion ML.PREDICT können Sie Vorhersagen zu Taxifahrten aus dem optimalen Modell der Tests abrufen.

Kosten

In dieser Anleitung werden kostenpflichtige Komponenten von Google Cloud verwendet, darunter:

  • BigQuery
  • BigQuery ML

Weitere Informationen zu den Kosten von BigQuery finden Sie auf der Seite BigQuery-Preise.

Vorbereitung

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  5. Make sure that billing is enabled for your Google Cloud project.

  6. BigQuery ist in neuen Projekten automatisch aktiviert. Zum Aktivieren von BigQuery in einem vorhandenen Projekt wechseln Sie zu

    Enable the BigQuery API.

    Enable the API

    .

Erforderliche Berechtigungen

  • Sie benötigen die IAM-Berechtigung bigquery.datasets.create, um das Dataset zu erstellen.
  • Zum Erstellen der Verbindungsressource benötigen Sie die folgenden Berechtigungen:

    • bigquery.connections.create
    • bigquery.connections.get
  • Zum Erstellen des Modells benötigen Sie die folgenden Berechtigungen:

    • bigquery.jobs.create
    • bigquery.models.create
    • bigquery.models.getData
    • bigquery.models.updateData
    • bigquery.connections.delegate
  • Zum Ausführen von Inferenzen benötigen Sie die folgenden Berechtigungen:

    • bigquery.models.getData
    • bigquery.jobs.create

Weitere Informationen zu IAM-Rollen und Berechtigungen in BigQuery finden Sie unter Einführung in IAM.

Dataset erstellen

Erstellen Sie ein BigQuery-Dataset, um Ihr ML-Modell zu speichern:

  1. Rufen Sie in der Google Cloud Console die Seite „BigQuery“ auf.

    Zur Seite „BigQuery“

  2. Klicken Sie im Bereich Explorer auf den Namen Ihres Projekts.

  3. Klicken Sie auf Aktionen ansehen > Dataset erstellen.

    Dataset erstellen

  4. Führen Sie auf der Seite Dataset erstellen die folgenden Schritte aus:

    • Geben Sie unter Dataset-ID bqml_tutorial ein.

    • Wählen Sie als Standorttyp die Option Mehrere Regionen und dann USA (mehrere Regionen in den USA) aus.

      Die öffentlichen Datasets sind am multiregionalen Standort US gespeichert. Der Einfachheit halber sollten Sie Ihr Dataset am selben Standort speichern.

    • Übernehmen Sie die verbleibenden Standardeinstellungen unverändert und klicken Sie auf Dataset erstellen.

      Seite "Dataset erstellen"

Tabelle mit Trainingsdaten erstellen

Erstellen Sie eine Tabelle mit Trainingsdaten, die auf einer Teilmenge der Tabelle tlc_yellow_trips_2018 basieren.

So erstellen Sie die Tabelle:

  1. Öffnen Sie in der Google Cloud Console die Seite BigQuery.

    BigQuery aufrufen

  2. Fügen Sie die folgende Abfrage in den Abfrageeditor ein und klicken Sie auf Ausführen:

    CREATE OR REPLACE TABLE `bqml_tutorial.taxi_tip_input`
    AS
    SELECT * EXCEPT (tip_amount), tip_amount AS label
    FROM
      `bigquery-public-data.new_york_taxi_trips.tlc_yellow_trips_2018`
    WHERE
      tip_amount IS NOT NULL
    LIMIT 100000;

Lineares Regressionsmodell für die Kontrollgruppe erstellen

Erstellen Sie ein lineares Regressionsmodell ohne Hyperparameter-Abstimmung und trainieren Sie es anhand der Daten in der Tabelle taxi_tip_input.

So erstellen Sie das Modell:

  1. Öffnen Sie in der Google Cloud Console die Seite BigQuery.

    BigQuery aufrufen

  2. Fügen Sie die folgende Abfrage in den Abfrageeditor ein und klicken Sie auf Ausführen:

    CREATE OR REPLACE MODEL `bqml_tutorial.baseline_taxi_tip_model`
      OPTIONS (
        MODEL_TYPE = 'LINEAR_REG'
      )
    AS
    SELECT
      *
    FROM
      `bqml_tutorial.taxi_tip_input`;

    Die Abfrage dauert etwa 2 Minuten.

Basismodell bewerten

Bewerten Sie die Leistung des Modells mit der Funktion ML.EVALUATE. Die Funktion ML.EVALUATE wertet die vom Modell zurückgegebenen vorhergesagten Inhaltsbewertungen anhand der Bewertungsmesswerte aus, die während des Modelltrainings berechnet wurden.

So bewerten Sie das Modell:

  1. Öffnen Sie in der Google Cloud Console die Seite BigQuery.

    BigQuery aufrufen

  2. Fügen Sie die folgende Abfrage in den Abfrageeditor ein und klicken Sie auf Ausführen:

    SELECT *
    FROM
      ML.EVALUATE(MODEL `bqml_tutorial.baseline_taxi_tip_model`);

    Die Ergebnisse sehen in etwa so aus:

    +---------------------+--------------------+------------------------+-----------------------+---------------------+---------------------+
    | mean_absolute_error | mean_squared_error | mean_squared_log_error | median_absolute_error |      r2_score       | explained_variance  |
    +---------------------+--------------------+------------------------+-----------------------+---------------------+---------------------+
    |  2.5853895559690323 | 23760.416358496139 |   0.017392406523370374 | 0.0044248227819481123 | -1934.5450533482465 | -1934.3513857946277 |
    +---------------------+--------------------+------------------------+-----------------------+---------------------+---------------------+
    

Der Wert für r2_score für das Referenzmodell ist negativ, was auf eine schlechte Anpassung an die Daten hinweist. Je näher der Wert für R2 an 1 liegt, desto besser ist die Modellanpassung.

Lineares Regressionsmodell mit Hyperparameter-Abstimmung erstellen

Erstellen Sie ein lineares Regressionsmodell mit Hyperparameter-Abstimmung und trainieren Sie es anhand der Daten in der Tabelle taxi_tip_input.

In der CREATE MODEL-Anweisung können Sie die folgenden Optionen für die Hyperparameter-Abstimmung verwenden:

  • Die Option NUM_TRIALS, um die Anzahl der Tests auf 20 festzulegen.
  • Die Option MAX_PARALLEL_TRIALS, mit der in jedem Trainingsjob zwei Tests ausgeführt werden, insgesamt also zehn Jobs und 20 Tests. Dadurch verkürzt sich die Trainingszeit. Die beiden gleichzeitigen Versuche profitieren jedoch nicht von den Trainingsergebnissen des jeweils anderen.
  • Mit der Option L1_REG können Sie in den verschiedenen Tests unterschiedliche L1-Regulierungswerte ausprobieren. Bei der L1-Regularisierung werden irrelevante Merkmale aus dem Modell entfernt, um eine Überanpassung zu verhindern.

Für die anderen vom Modell unterstützten Optionen zur Hyperparameter-Abstimmung werden die Standardwerte verwendet:

  • L1_REG: 0
  • HPARAM_TUNING_ALGORITHM: 'VIZIER_DEFAULT'
  • HPARAM_TUNING_OBJECTIVES: ['R2_SCORE']

So erstellen Sie das Modell:

  1. Öffnen Sie in der Google Cloud Console die Seite BigQuery.

    BigQuery aufrufen

  2. Fügen Sie die folgende Abfrage in den Abfrageeditor ein und klicken Sie auf Ausführen:

    CREATE OR REPLACE MODEL `bqml_tutorial.hp_taxi_tip_model`
      OPTIONS (
        MODEL_TYPE = 'LINEAR_REG',
        NUM_TRIALS = 20,
        MAX_PARALLEL_TRIALS = 2,
        L1_REG = HPARAM_RANGE(0, 5))
    AS
    SELECT
      *
    FROM
      `bqml_tutorial.taxi_tip_input`;

    Die Abfrage dauert etwa 20 Minuten.

Informationen zu den Trainingstests

Mit der Funktion ML.TRIAL_INFO können Sie Informationen zu allen Tests abrufen, einschließlich ihrer Hyperparameterwerte, Ziele und Status. Diese Funktion gibt auch Informationen dazu zurück, welcher Test die beste Leistung erzielt.

So erhalten Sie Informationen zum Testzeitraum:

  1. Öffnen Sie in der Google Cloud Console die Seite BigQuery.

    BigQuery aufrufen

  2. Fügen Sie die folgende Abfrage in den Abfrageeditor ein und klicken Sie auf Ausführen:

    SELECT *
    FROM
      ML.TRIAL_INFO(MODEL `bqml_tutorial.hp_taxi_tip_model`)
    ORDER BY is_optimal DESC;

    Die Ergebnisse sehen in etwa so aus:

    +----------+-------------------------------------+-----------------------------------+--------------------+--------------------+-----------+---------------+------------+
    | trial_id |           hyperparameters           | hparam_tuning_evaluation_metrics  |   training_loss    |     eval_loss      |  status   | error_message | is_optimal |
    +----------+-------------------------------------+-----------------------------------+--------------------+--------------------+-----------+---------------+------------+
    |        7 |      {"l1_reg":"4.999999999999985"} |  {"r2_score":"0.653653627638174"} | 4.4677841296238165 |  4.478469742512195 | SUCCEEDED | NULL          |       true |
    |        2 |  {"l1_reg":"2.402163664510254E-11"} | {"r2_score":"0.6532493667964732"} |  4.457692508421795 |  4.483697081650438 | SUCCEEDED | NULL          |      false |
    |        3 |  {"l1_reg":"1.2929452948742316E-7"} |  {"r2_score":"0.653249366811995"} |   4.45769250849513 |  4.483697081449748 | SUCCEEDED | NULL          |      false |
    |        4 |  {"l1_reg":"2.5787102060628228E-5"} | {"r2_score":"0.6532493698925899"} |  4.457692523040582 |  4.483697041615808 | SUCCEEDED | NULL          |      false |
    |      ... |                             ...     |                           ...     |              ...   |             ...    |       ... |          ...  |        ... |
    +----------+-------------------------------------+-----------------------------------+--------------------+--------------------+-----------+---------------+------------+
    

    Der Wert in der Spalte is_optimal gibt an, dass Test 7 das optimale Modell ist, das durch die Optimierung zurückgegeben wurde.

Tests für das optimierte Modell bewerten

Mit der Funktion ML.EVALUATE können Sie die Leistung der Tests bewerten. Die Funktion ML.EVALUATE wertet die vom Modell zurückgegebenen vorhergesagten Inhaltsbewertungen anhand der Bewertungsmesswerte aus, die während des Trainings für alle Tests berechnet wurden.

So bewerten Sie die Modelltests:

  1. Öffnen Sie in der Google Cloud Console die Seite BigQuery.

    BigQuery aufrufen

  2. Fügen Sie die folgende Abfrage in den Abfrageeditor ein und klicken Sie auf Ausführen:

    SELECT *
    FROM
      ML.EVALUATE(MODEL `bqml_tutorial.hp_taxi_tip_model`)
    ORDER BY r2_score DESC;

    Die Ergebnisse sehen in etwa so aus:

    +----------+---------------------+--------------------+------------------------+-----------------------+--------------------+--------------------+
    | trial_id | mean_absolute_error | mean_squared_error | mean_squared_log_error | median_absolute_error |      r2_score      | explained_variance |
    +----------+---------------------+--------------------+------------------------+-----------------------+--------------------+--------------------+
    |        7 |   1.151814398002232 |  4.109811493266523 |     0.4918733252641176 |    0.5736103414025084 | 0.6652110305659145 | 0.6652144696114834 |
    |       19 |  1.1518143358927102 |  4.109811921460791 |     0.4918672150119582 |    0.5736106106914161 | 0.6652109956848206 | 0.6652144346901685 |
    |        8 |   1.152747850702547 |  4.123625876152422 |     0.4897808307399327 |    0.5731702310239184 | 0.6640856984144734 |  0.664088410199906 |
    |        5 |   1.152895108945439 |  4.125775524878872 |    0.48939088205957937 |    0.5723300569616766 | 0.6639105860807425 | 0.6639132416838652 |
    |      ... |                ...  |                ... |                    ... |                   ... |                ... |                ... |
    +----------+---------------------+--------------------+------------------------+-----------------------+--------------------+--------------------+
    

    Der Wert für r2_score für das optimale Modell, also Test 7, ist 0.66521103056591446. Das ist eine deutliche Verbesserung gegenüber dem Kontrollmodell.

Sie können einen bestimmten Test bewerten, indem Sie das Argument TRIAL_ID in der Funktion ML.EVALUATE angeben.

Weitere Informationen zum Unterschied zwischen ML.TRIAL_INFO-Zielen und ML.EVALUATE-Bewertungsmesswerten finden Sie unter Funktionen für die Modellbereitstellung.

Abgestimmtes Modell verwenden, um Taxitipps vorherzusagen

Verwenden Sie das optimale Modell, das durch die Optimierung zurückgegeben wurde, um Trinkgelder für verschiedene Taxifahrten vorherzusagen. Das optimale Modell wird von der Funktion ML.PREDICT automatisch verwendet, es sei denn, Sie wählen einen anderen Test aus, indem Sie das Argument TRIAL_ID angeben. Die Vorhersagen werden in der Spalte predicted_label zurückgegeben.

So erhalten Sie Vorhersagen:

  1. Öffnen Sie in der Google Cloud Console die Seite BigQuery.

    BigQuery aufrufen

  2. Fügen Sie die folgende Abfrage in den Abfrageeditor ein und klicken Sie auf Ausführen:

    SELECT *
    FROM
      ML.PREDICT(
        MODEL `bqml_tutorial.hp_taxi_tip_model`,
        (
          SELECT
            *
          FROM
            `bqml_tutorial.taxi_tip_input`
          LIMIT 5
        ));

    Die Ergebnisse sehen in etwa so aus:

    +----------+--------------------+-----------+---------------------+---------------------+-----------------+---------------+-----------+--------------------+--------------+-------------+-------+---------+--------------+---------------+--------------+--------------------+---------------------+----------------+-----------------+-------+
    | trial_id |  predicted_label   | vendor_id |   pickup_datetime   |  dropoff_datetime   | passenger_count | trip_distance | rate_code | store_and_fwd_flag | payment_type | fare_amount | extra | mta_tax | tolls_amount | imp_surcharge | total_amount | pickup_location_id | dropoff_location_id | data_file_year | data_file_month | label |
    +----------+--------------------+-----------+---------------------+---------------------+-----------------+---------------+-----------+--------------------+--------------+-------------+-------+---------+--------------+---------------+--------------+--------------------+---------------------+----------------+-----------------+-------+
    |        7 |  1.343367839584448 | 2         | 2018-01-15 18:55:15 | 2018-01-15 18:56:18 |               1 |             0 | 1         | N                  | 1            |           0 |     0 |       0 |            0 |             0 |            0 | 193                | 193                 |           2018 |               1 |     0 |
    |        7 | -1.176072791783461 | 1         | 2018-01-08 10:26:24 | 2018-01-08 10:26:37 |               1 |             0 | 5         | N                  | 3            |        0.01 |     0 |       0 |            0 |           0.3 |         0.31 | 158                | 158                 |           2018 |               1 |     0 |
    |        7 |  3.839580104168765 | 1         | 2018-01-22 10:58:02 | 2018-01-22 12:01:11 |               1 |          16.1 | 1         | N                  | 1            |        54.5 |     0 |     0.5 |            0 |           0.3 |         55.3 | 140                | 91                  |           2018 |               1 |     0 |
    |        7 |  4.677393985230036 | 1         | 2018-01-16 10:14:35 | 2018-01-16 11:07:28 |               1 |            18 | 1         | N                  | 2            |        54.5 |     0 |     0.5 |            0 |           0.3 |         55.3 | 138                | 67                  |           2018 |               1 |     0 |
    |        7 |  7.938988937253062 | 2         | 2018-01-16 07:05:15 | 2018-01-16 08:06:31 |               1 |          17.8 | 1         | N                  | 1            |        54.5 |     0 |     0.5 |            0 |           0.3 |        66.36 | 132                | 255                 |           2018 |               1 | 11.06 |
    +----------+--------------------+-----------+---------------------+---------------------+-----------------+---------------+-----------+--------------------+--------------+-------------+-------+---------+--------------+---------------+--------------+--------------------+---------------------+----------------+-----------------+-------+
    

Bereinigen

Damit Ihrem Google Cloud-Konto die in dieser Anleitung verwendeten Ressourcen nicht in Rechnung gestellt werden, löschen Sie entweder das Projekt, das die Ressourcen enthält, oder Sie behalten das Projekt und löschen die einzelnen Ressourcen.

  • Sie können das von Ihnen erstellte Projekt löschen.
  • Sie können das Projekt aber auch behalten und das Dataset löschen.

Dataset löschen

Wenn Sie Ihr Projekt löschen, werden alle Datasets und Tabellen entfernt. Wenn Sie das Projekt wieder verwenden möchten, können Sie das in dieser Anleitung erstellte Dataset löschen:

  1. Rufen Sie, falls erforderlich, die Seite "BigQuery" in der Google Cloud Console auf.

    Zur Seite "BigQuery"

  2. Wählen Sie im Navigationsbereich das Dataset bqml_tutorial aus, das Sie erstellt haben.

  3. Klicken Sie auf der rechten Seite des Fensters auf Dataset löschen. Das Dataset, die Tabelle und alle Daten werden gelöscht.

  4. Bestätigen Sie im Dialogfeld Dataset löschen den Löschbefehl. Geben Sie dazu den Namen des Datasets (bqml_tutorial) ein und klicken Sie auf Löschen.

Projekt löschen

So löschen Sie das Projekt:

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.

Nächste Schritte