Generare testo utilizzando un modello aperto Gemma e la funzione ML.GENERATE_TEXT
Questo tutorial mostra come creare un
modello remoto
basato sul
modello Gemma,
e poi come utilizzarlo con la
funzione ML.GENERATE_TEXT
per estrarre le parole chiave ed eseguire l'analisi del sentiment sulle recensioni dei film dalla tabella pubblica bigquery-public-data.imdb.reviews
.
Autorizzazioni obbligatorie
- Per creare il set di dati, devi disporre dell'autorizzazione
bigquery.datasets.create
Identity and Access Management (IAM). Per creare la risorsa di connessione, sono necessarie le seguenti autorizzazioni IAM:
bigquery.connections.create
bigquery.connections.get
Per concedere le autorizzazioni all'account di servizio della connessione, devi disporre della seguente autorizzazione:
resourcemanager.projects.setIamPolicy
Per creare il modello, devi disporre delle seguenti autorizzazioni:
bigquery.jobs.create
bigquery.models.create
bigquery.models.getData
bigquery.models.updateData
bigquery.connections.delegate
Per eseguire l'inferenza, devi disporre delle seguenti autorizzazioni:
bigquery.models.getData
bigquery.jobs.create
Costi
In questo documento utilizzi i seguenti componenti fatturabili di Google Cloud:
- BigQuery ML: You incur costs for the data that you process in BigQuery.
- Vertex AI: You incur costs for calls to the Vertex AI model that's represented by the remote model.
Per generare una stima dei costi in base all'utilizzo previsto,
utilizza il Calcolatore prezzi.
Per ulteriori informazioni sui prezzi di BigQuery, consulta la sezione Prezzi di BigQuery della documentazione di BigQuery.
I modelli aperti di cui esegui il deployment in Vertex AI vengono addebitati per ora macchina. Ciò significa che la fatturazione inizia non appena l'endpoint è completamente configurato e continua fino a quando non viene annullato il deployment. Per ulteriori informazioni sui prezzi di Vertex AI, consulta la pagina Prezzi di Vertex AI.
Prima di iniziare
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery, BigQuery Connection, and Vertex AI APIs.
Esegui il deployment di un modello Gemma su Vertex AI
Esegui il deployment del
gemma-2-27b-it
modello in Vertex AI seguendo le istruzioni riportate in
Eseguire il deployment dei modelli di Model Garden.
Crea un set di dati
Crea un set di dati BigQuery per archiviare il tuo modello ML.
Console
Nella console Google Cloud, vai alla pagina BigQuery.
Nel riquadro Explorer, fai clic sul nome del progetto.
Fai clic su
Visualizza azioni > Crea set di dati.Nella pagina Crea set di dati:
In ID set di dati, inserisci
bqml_tutorial
.Per Tipo di località, seleziona Più regioni e poi Stati Uniti (più regioni negli Stati Uniti).
I set di dati pubblici sono archiviati nella
US
multiregione. Per semplicità, archivia il tuo set di dati nella stessa posizione.- Lascia invariate le restanti impostazioni predefinite e fai clic su Crea set di dati.
bq
Per creare un nuovo set di dati, utilizza il comando
bq mk
con il flag --location
. Per un elenco completo dei possibili parametri, consulta la documentazione di riferimento del comando bq mk --dataset
.
Crea un set di dati denominato
bqml_tutorial
con la posizione dei dati impostata suUS
e una descrizione diBigQuery ML tutorial dataset
:bq --location=US mk -d \ --description "BigQuery ML tutorial dataset." \ bqml_tutorial
Anziché utilizzare il flag
--dataset
, il comando utilizza la scorciatoia-d
. Se ometti-d
e--dataset
, il comando crea per impostazione predefinita un set di dati.Verifica che il set di dati sia stato creato:
bq ls
API
Chiama il metodo datasets.insert
con una risorsa set di dati definita.
{ "datasetReference": { "datasetId": "bqml_tutorial" } }
Crea una connessione
Crea una connessione risorsa Cloud e recupera l'account di servizio della connessione. Crea la connessione nella stessa posizione del set di dati creato nel passaggio precedente.
Seleziona una delle seguenti opzioni:
Console
Vai alla pagina BigQuery.
Per creare una connessione, fai clic su
Aggiungi e poi su Connessioni a origini dati esterne.Nell'elenco Tipo di connessione, seleziona Modelli remoti di Vertex AI, funzioni remote e BigLake (risorsa Cloud).
Nel campo ID connessione, inserisci un nome per la connessione.
Fai clic su Crea connessione.
Fai clic su Vai alla connessione.
Nel riquadro Informazioni sulla connessione, copia l'ID account di servizio da utilizzare in un passaggio successivo.
bq
In un ambiente a riga di comando, crea una connessione:
bq mk --connection --location=REGION --project_id=PROJECT_ID \ --connection_type=CLOUD_RESOURCE CONNECTION_ID
Il parametro
--project_id
sostituisce il progetto predefinito.Sostituisci quanto segue:
REGION
: la regione di connessionePROJECT_ID
: il tuo ID progetto Google CloudCONNECTION_ID
: un ID per la connessione
Quando crei una risorsa di connessione, BigQuery crea un account di servizio di sistema unico e lo associa alla connessione.
Risoluzione dei problemi: se ricevi il seguente errore di connessione, aggiorna Google Cloud SDK:
Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
Recupera e copia l'ID account di servizio per utilizzarlo in un passaggio successivo:
bq show --connection PROJECT_ID.REGION.CONNECTION_ID
L'output è simile al seguente:
name properties 1234.REGION.CONNECTION_ID {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
Terraform
Utilizza la risorsa
google_bigquery_connection
.
Per autenticarti in BigQuery, configura le credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per le librerie client.
L'esempio seguente crea una connessione risorsa Cloud denominata
my_cloud_resource_connection
nella regione US
:
Per applicare la configurazione Terraform in un progetto Google Cloud, completa i passaggi nelle seguenti sezioni.
Prepara Cloud Shell
- Avvia Cloud Shell.
-
Imposta il progetto Google Cloud predefinito in cui vuoi applicare le configurazioni Terraform.
Devi eseguire questo comando una sola volta per progetto e puoi farlo in qualsiasi directory.
export GOOGLE_CLOUD_PROJECT=PROJECT_ID
Le variabili di ambiente vengono sostituite se imposti valori espliciti nel file di configurazione Terraform.
Prepara la directory
Ogni file di configurazione di Terraform deve avere una propria directory (chiamata anche modulo principale).
-
In Cloud Shell, crea una directory e un nuovo
file al suo interno. Il nome file deve avere l'estensione
.tf
, ad esempiomain.tf
. In questo tutorial, il file è denominatomain.tf
.mkdir DIRECTORY && cd DIRECTORY && touch main.tf
-
Se stai seguendo un tutorial, puoi copiare il codice di esempio in ogni sezione o passaggio.
Copia il codice di esempio nel
main.tf
appena creato.Se vuoi, copia il codice da GitHub. Questa opzione è consigliata quando lo snippet Terraform fa parte di una soluzione end-to-end.
- Esamina e modifica i parametri di esempio da applicare al tuo ambiente.
- Salva le modifiche.
-
Inizializza Terraform. Devi eseguire questa operazione una sola volta per directory.
terraform init
Se vuoi, per utilizzare la versione più recente del provider Google, includi l'opzione
-upgrade
:terraform init -upgrade
Applica le modifiche
-
Rivedi la configurazione e verifica che le risorse che Terraform sta per creare o
aggiornare corrispondano alle tue aspettative:
terraform plan
Apporta le correzioni necessarie alla configurazione.
-
Applica la configurazione di Terraform eseguendo il seguente comando e inserendo
yes
al prompt:terraform apply
Attendi che Terraform mostri il messaggio "Applicazione completata".
- Apri il tuo progetto Google Cloud per visualizzare i risultati. Nella console Google Cloud, vai alle risorse nell'interfaccia utente per assicurarti che Terraform le abbia create o aggiornate.
Concedi le autorizzazioni all'account di servizio della connessione
Concedi all'account di servizio della connessione il ruolo Utente Vertex AI. Devi concedere questo ruolo nello stesso progetto che hai creato o selezionato nella sezione Prima di iniziare. Se concedi il ruolo in un progetto diverso, viene visualizzato l'errore bqcx-1234567890-xxxx@gcp-sa-bigquery-condel.iam.gserviceaccount.com does not have the permission to access resource
.
Per concedere il ruolo, segui questi passaggi:
Vai alla pagina IAM e amministrazione.
Fai clic su
Concedi accesso.Nel campo Nuove entità, inserisci l'ID account di servizio che hai copiato in precedenza.
Nel campo Seleziona un ruolo, scegli Vertex AI e poi Ruolo utente Vertex AI.
Fai clic su Salva.
Crea il modello remoto
Crea un modello remoto che rappresenti un modello Vertex AI ospitato:
Nella console Google Cloud, vai alla pagina BigQuery.
Nell'editor di query, esegui la seguente istruzione:
CREATE OR REPLACE MODEL `bqml_tutorial.gemma_model` REMOTE WITH CONNECTION `LOCATION.CONNECTION_ID` OPTIONS (ENDPOINT = 'https://ENDPOINT_REGION-aiplatform.googleapis.com/v1/projects/ENDPOINT_PROJECT_ID/locations/ENDPOINT_REGION/endpoints/ENDPOINT_ID');
Sostituisci quanto segue:
LOCATION
: la posizione della connessione.CONNECTION_ID
: l'ID della connessione BigQuery.Quando visualizzi i dettagli della connessione nella console Google Cloud, questo è il valore nell'ultima sezione dell'ID connessione visualizzato in ID connessione, ad esempio
projects/myproject/locations/connection_location/connections/myconnection
.ENDPOINT_REGION
: la regione in cui è stato eseguito il deployment del modello aperto.ENDPOINT_PROJECT_ID
: il progetto in cui è disegnato il modello aperto.ENDPOINT_ID
: l'ID dell'endpoint HTTPS utilizzato dal modello aperto. Puoi ottenere l'ID endpoint individuando il modello aperto nella pagina Previsione online e copiando il valore nel campo ID.
L'esempio seguente mostra il formato di un endpoint HTTP valido:
https://us-central1-aiplatform.googleapis.com/v1/projects/myproject/locations/us-central1/endpoints/1234
.
Il completamento della query richiede alcuni secondi, dopodiché il modello gemma_model
viene visualizzato nel set di dati bqml_tutorial
nel riquadro Esplorazione.
Poiché la query utilizza un'istruzione CREATE MODEL
per creare un modello, non esistono risultati della query.
Eseguire l'estrazione delle parole chiave
Esegui l'estrazione delle parole chiave dalle recensioni dei film di IMDB utilizzando il modello remoto e la funzione ML.GENERATE_TEXT
:
Nella console Google Cloud, vai alla pagina BigQuery.
Nell'editor di query, inserisci la seguente istruzione per eseguire l'estrazione delle parole chiave da cinque recensioni di film:
SELECT * FROM ML.GENERATE_TEXT( MODEL `bqml_tutorial.gemma_model`, ( SELECT CONCAT('Extract the key words from the movie review below: ', review) AS prompt, * FROM `bigquery-public-data.imdb.reviews` LIMIT 10 ), STRUCT( 0.2 AS temperature, 100 AS max_output_tokens, TRUE AS flatten_json_output));
L'output è simile al seguente, con le colonne non generate omesse per chiarezza:
+----------------------------------------------+-------------------------+-----------------------------+-----+ | generated_text | ml_generate_text_status | prompt | ... | +----------------------------------------------+-------------------------------------------------------+-----+ | Here are some key words from the | | Extract the key words from | | | movie review: * **Romance:** | | the movie review below: | | | "romantic tryst," "elope" * **Comedy:** | | Linda Arvidson (as Jennie) | | | "Contrived Comedy" * **Burglary:** | | and Harry Solter (as Frank) | | | "burglar," "rob," "booty" * **Chase:** | | are enjoying a romantic | | | "chases," "escape" * **Director:** "D.W. | | tryst, when in walks her | | | Griffith" * **Actors:** "Linda Arvidson,"... | | father Charles Inslee;... | | +----------------------------------------------+-------------------------+-----------------------------+-----+ | Here are some key words from the | | Extract the key words from | | | movie review: * **Elderbush Gilch:** The | | the movie review below: | | | name of the movie being reviewed. * | | This is the second addition | | | **Disappointment:** The reviewer's | | to Frank Baum's personally | | | overall feeling about the film. * | | produced trilogy of Oz | | | **Dim-witted:** Describes the story | | films. It's essentially the | | | line negatively. * **Moronic, sadistic,... | | same childishness as the... | | +----------------------------------------------+-------------------------+-----------------------------+-----+
I risultati includono le seguenti colonne:
generated_text
: il testo generato.ml_generate_text_status
: lo stato della risposta dell'API per la riga corrispondente. Se l'operazione è andata a buon fine, questo valore è vuoto.prompt
: il prompt utilizzato per l'analisi del sentiment.- Tutte le colonne della tabella
bigquery-public-data.imdb.reviews
.
Esegui l'analisi del sentiment
Esegui l'analisi del sentiment sulle recensioni dei film di IMDB utilizzando il modello remoto e la funzione ML.GENERATE_TEXT
:
Nella console Google Cloud, vai alla pagina BigQuery.
Nell'editor di query, esegui la seguente istruzione per eseguire l'analisi del sentiment su cinque recensioni di film:
SELECT * FROM ML.GENERATE_TEXT( MODEL `bqml_tutorial.gemma_model`, ( SELECT CONCAT('Analyze the sentiment of the following movie review and classify it as either POSITIVE or NEGATIVE. \nMovie Review: ', review) AS prompt, * FROM `bigquery-public-data.imdb.reviews` LIMIT 10 ), STRUCT( 0.2 AS temperature, 128 AS max_output_tokens, TRUE AS flatten_json_output));
L'output è simile al seguente, con le colonne non generate omesse per chiarezza:
+----------------------------------------------+-------------------------+-----------------------------+-----+ | generated_text | ml_generate_text_status | prompt | ... | +----------------------------------------------+-------------------------------------------------------+-----+ | **Sentiment:** NEGATIVE **Justification:** | | Analyze the sentiment of | | | * **Negative Language:** The reviewer uses | | movie review and classify | | | phrases like "don't quite make it," "come to | | it as either POSITIVE or | | | mind," "quite disappointing," and "not many | | NEGATIVE. Movie Review: | | | laughs." * **Specific Criticisms:** The | | Although Charlie Chaplin | | | reviewer points out specific flaws in the | | made some great short | | | plot and humor, stating that the manager... | | comedies in the late... | | +----------------------------------------------+-------------------------+-----------------------------+-----+ | **Sentiment:** NEGATIVE **Reasoning:** | | Analyze the sentiment of | | | * **Negative Language:** The reviewer uses | | movie review and classify | | | phrases like "poor writing," "static camera- | | it as either POSITIVE or | | | work," "chews the scenery," "all surface and | | NEGATIVE. Movie Review: | | | no depth," "sterile spectacles," which all | | Opulent sets and sumptuous | | | carry negative connotations. * **Comparison | | costumes well photographed | | | to a More Successful Film:**... | | by Theodor Sparkuhl, and... | | +----------------------------------------------+-------------------------+-----------------------------+-----+
I risultati includono le stesse colonne descritte per Eseguire l'estrazione delle parole chiave.
Annulla il deployment del modello
Se scegli di non eliminare il progetto come consigliato, assicurati di annullare il deployment del modello Gemma in Vertex AI per evitare la fatturazione continua.
Esegui la pulizia
- In the Google Cloud console, go to the Manage resources page.
- In the project list, select the project that you want to delete, and then click Delete.
- In the dialog, type the project ID, and then click Shut down to delete the project.