Genera testo utilizzando un modello Gemini e la funzione ML.GENERATE_TEXT

Questo tutorial mostra come creare un modello remoto che si basa gemini-1.0-pro-002, e quindi come utilizzarlo con Funzione ML.GENERATE_TEXT estrarre parole chiave ed eseguire l'analisi del sentiment sulle recensioni dei film la tabella pubblica bigquery-public-data.imdb.reviews.

Autorizzazioni obbligatorie

  • Per creare il set di dati, devi disporre dell'autorizzazione bigquery.datasets.create Identity and Access Management (IAM).
  • Per creare la risorsa di connessione, sono necessarie le seguenti autorizzazioni IAM:

    • bigquery.connections.create
    • bigquery.connections.get
  • Per concedere le autorizzazioni all'account di servizio della connessione, è necessario il seguente autorizzazione:

    • resourcemanager.projects.setIamPolicy
  • Per creare il modello, devi disporre delle seguenti autorizzazioni:

    • bigquery.jobs.create
    • bigquery.models.create
    • bigquery.models.getData
    • bigquery.models.updateData
    • bigquery.connections.delegate
  • Per eseguire l'inferenza, devi disporre delle seguenti autorizzazioni:

    • bigquery.models.getData
    • bigquery.jobs.create

Costi

In questo documento utilizzi i seguenti componenti fatturabili di Google Cloud:

  • BigQuery ML: You incur costs for the data that you process in BigQuery.
  • Vertex AI: You incur costs for calls to the Vertex AI service that's represented by the remote model.

Per generare una stima dei costi basata sull'utilizzo previsto, utilizza il Calcolatore prezzi. I nuovi utenti di Google Cloud potrebbero essere idonei per una prova gratuita.

Per ulteriori informazioni sui prezzi di BigQuery, consulta la sezione Prezzi di BigQuery della documentazione di BigQuery.

Per ulteriori informazioni sui prezzi di Vertex AI, consulta Prezzi di Vertex AI .

Prima di iniziare

  1. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  2. Make sure that billing is enabled for your Google Cloud project.

  3. Enable the BigQuery, BigQuery Connection, and Vertex AI APIs.

    Enable the APIs

Crea un set di dati

Crea un set di dati BigQuery per archiviare il tuo modello ML:

  1. Nella console Google Cloud, vai alla pagina BigQuery.

    Vai alla pagina di BigQuery

  2. Nel riquadro Explorer, fai clic sul nome del tuo progetto.

  3. Fai clic su Visualizza azioni > Crea set di dati.

    Crea il set di dati.

  4. Nella pagina Crea set di dati:

    • In ID set di dati, inserisci bqml_tutorial.

    • Per Tipo di località, seleziona Più regioni e poi Stati Uniti (più regioni negli Stati Uniti).

      I set di dati pubblici sono archiviati nella US multiregione. Per semplicità, per archiviare il set di dati nella stessa posizione.

    • Lascia invariate le restanti impostazioni predefinite e fai clic su Crea set di dati.

      Pagina Crea set di dati.

Crea una connessione

Crea un Connessione alle risorse cloud e recuperare l'account di servizio della connessione. Crea la connessione nella stessa posizione del set di dati creato nel passaggio precedente.

Seleziona una delle seguenti opzioni:

Console

  1. Vai alla pagina BigQuery.

    Vai a BigQuery

  2. Per creare una connessione, fai clic su Aggiungi e poi su Connessioni a origini dati esterne.

  3. Nell'elenco Tipo di connessione, seleziona Modelli remoti di Vertex AI, funzioni remote e BigLake (risorsa Cloud).

  4. Nel campo ID connessione, inserisci un nome per la connessione.

  5. Fai clic su Crea connessione.

  6. Fai clic su Vai alla connessione.

  7. Nel riquadro Informazioni sulla connessione, copia l'ID account di servizio da utilizzare in una passaggio successivo.

bq

  1. In un ambiente a riga di comando, crea una connessione:

    bq mk --connection --location=REGION --project_id=PROJECT_ID \
        --connection_type=CLOUD_RESOURCE CONNECTION_ID

    Il parametro --project_id sostituisce il progetto predefinito.

    Sostituisci quanto segue:

    • REGION: il tuo regione di connessione
    • PROJECT_ID: l'ID del tuo progetto Google Cloud
    • CONNECTION_ID: un ID per connessione

    Quando crei una risorsa di connessione, BigQuery crea di account di servizio di sistema univoco e lo associa alla connessione.

    Risoluzione dei problemi: se ricevi il seguente errore di connessione, aggiorna Google Cloud SDK:

    Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
    
  2. Recupera e copia l'ID account di servizio per utilizzarlo in un secondo momento passaggio:

    bq show --connection PROJECT_ID.REGION.CONNECTION_ID

    L'output è simile al seguente:

    name                          properties
    1234.REGION.CONNECTION_ID     {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
    

Terraform

Aggiungi la seguente sezione al tuo file main.tf.

 ## This creates a cloud resource connection.
 ## Note: The cloud resource nested object has only one output only field - serviceAccountId.
 resource "google_bigquery_connection" "connection" {
    connection_id = "CONNECTION_ID"
    project = "PROJECT_ID"
    location = "REGION"
    cloud_resource {}
}        
Sostituisci quanto segue:

  • CONNECTION_ID: un ID per connessione
  • PROJECT_ID: l'ID del tuo progetto Google Cloud
  • REGION: la regione di connessione

Concedi le autorizzazioni all'account di servizio della connessione

Concedi all'account di servizio della connessione il ruolo Vertex AI User. Devi concedere questo ruolo nello stesso progetto che hai creato o selezionato nella sezione Prima di iniziare. Se concedi il ruolo in un progetto diverso, viene visualizzato l'errore bqcx-1234567890-xxxx@gcp-sa-bigquery-condel.iam.gserviceaccount.com does not have the permission to access resource.

Per concedere il ruolo:

  1. Vai alla pagina IAM e amministrazione.

    Vai a IAM e amministrazione

  2. Fai clic su Concedi l'accesso.

  3. Nel campo Nuove entità, inserisci l'ID account di servizio che copiato in precedenza.

  4. Nel campo Seleziona un ruolo, scegli Vertex AI, quindi seleziona Ruolo utente Vertex AI.

  5. Fai clic su Salva.

Crea il modello remoto

Crea un modello remoto che rappresenta un modello Vertex AI ospitato modello:

  1. Nella console Google Cloud, vai alla pagina BigQuery.

    Vai a BigQuery

  2. Nell'editor di query, esegui la seguente istruzione:

CREATE OR REPLACE MODEL `bqml_tutorial.gemini_model`
  REMOTE WITH CONNECTION `LOCATION.CONNECTION_ID`
  OPTIONS (ENDPOINT = 'gemini-1.0-pro-002');

Sostituisci quanto segue:

  • LOCATION: la posizione della connessione
  • CONNECTION_ID: l'ID del tuo Connessione BigQuery

    Quando visualizzi i dettagli della connessione nella console Google Cloud, questo è il valore nell'ultima sezione dell'ID connessione visualizzato in ID connessione, ad esempio projects/myproject/locations/connection_location/connections/myconnection

Il completamento della query richiede diversi secondi, dopodiché il modello gemini_model compare nel set di dati bqml_tutorial nel riquadro Explorer. Poiché la query utilizza un'istruzione CREATE MODEL per creare un modello, non sono risultati di query.

Esegui l'estrazione delle parole chiave

Esegui l'estrazione delle parole chiave dalle recensioni dei film di IMDB utilizzando il modello remoto e la funzione ML.GENERATE_TEXT:

  1. Nella console Google Cloud, vai alla pagina BigQuery.

    Vai a BigQuery

  2. Nell'editor query, inserisci la seguente istruzione per eseguire parole chiave di video in base a cinque recensioni di film:

    SELECT
      ml_generate_text_result['candidates'][0]['content'] AS generated_text,
      ml_generate_text_result['candidates'][0]['safety_ratings']
        AS safety_ratings,
      * EXCEPT (ml_generate_text_result)
    FROM
      ML.GENERATE_TEXT(
        MODEL `bqml_tutorial.gemini_model`,
        (
          SELECT
            CONCAT('Extract the key words from the text below: ', review) AS prompt,
            *
          FROM
            `bigquery-public-data.imdb.reviews`
          LIMIT 5
        ),
        STRUCT(
          0.2 AS temperature,
          100 AS max_output_tokens));

    L'output è simile al seguente, con le colonne non generate omesse per chiarezza:

    +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    | generated_text                         | safety_ratings                              | ml_generate_text_status | prompt                     | ... |
    +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    | {"parts":[{"text":"## Key words:\n\n*  | [{"category":1,"probability":1,             |                         | Extract the key words from |     |
    | **Negative sentiment:** \"terribly     | "probability_score":0.28856909,             |                         | the text below: I had to   |     |
    | bad acting\", \"dumb story\", \"not    | "severity":1,"severity_score":0.1510278},   |                         | see this on the British    |     |
    | even a kid would enjoy this\",         | {"category":2,"probability":1,              |                         | Airways plane. It was      |     |
    | \"something to switch off\"\n*         | "probability_score":0.062445287,            |                         | terribly bad acting and    |     |
    | **Context:** \"British Airways plane\" | "severity":1,"severity_score":0.10393038},  |                         | a dumb story. Not even     |     |
    | \n* **Genre:** \"movie\" (implied)...  | {"category":3,"probability":2,...           |                         | a kid would enjoy this...  |     |
    +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    | {"parts":[{"text":"## Key words:\n\n*  | [{"category":1,"probability":1,             |                         | Extract the key words from |     |
    | **Movie:** The Real Howard Spitz\n*    | "probability_score":0.2995148,"severity":2, |                         | the text below: This is    |     |
    | **Genre:** Family movie\n*             | "severity_score":0.22354652},               |                         | a family movie that was    |     |
    | **Broadcast:** ITV station, 1.00 am\n* | {"category":2,"probability":1,"             |                         | broadcast on my local      |     |
    | **Director:** Vadim Jean\n*            | probability_score":0.13072868,              |                         | ITV station at 1.00 am a   |     |
    | **Main character:** Howard Spitz,      | "severity":1,"severity_score":0.07030385},  |                         | couple of nights ago.      |     |
    | a children's author who hates...       | {"category":3,"probability":2,"       ...   |                         | This might be a strange... |     |
    +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    

    I risultati includono le seguenti colonne:

    • generated_text: il testo generato.
    • safety_ratings: gli attributi di sicurezza, insieme alle informazioni su se i contenuti sono bloccati a causa di una delle categorie di blocco. Per ulteriori informazioni sugli attributi di sicurezza, vedi API Vertex PaLM.
    • ml_generate_text_status: lo stato della risposta dell'API per la riga corrispondente. Se l'operazione è riuscita, questo valore è vuoto.
    • prompt: il prompt utilizzato per l'analisi del sentiment.
    • Tutte le colonne della tabella bigquery-public-data.imdb.reviews.
  3. Facoltativo: anziché analizzare manualmente il codice JSON restituito dalla funzione, che hai fatto nel passaggio precedente, utilizza l'argomento flatten_json_output per restituiscono il testo generato e gli attributi di sicurezza in colonne separate.

    Nell'editor di query, esegui la seguente istruzione:

    SELECT
      *
    FROM
      ML.GENERATE_TEXT(
        MODEL `bqml_tutorial.gemini_model`,
        (
          SELECT
            CONCAT('Extract the key words from the text below: ', review) AS prompt,
            *
          FROM
            `bigquery-public-data.imdb.reviews`
          LIMIT 5
        ),
        STRUCT(
          0.2 AS temperature,
          100 AS max_output_tokens,
          TRUE AS flatten_json_output));

    L'output è simile al seguente, con le colonne non generate omesse per chiarezza:

    +----------------------------------------+----------------------------------------------+-------------------------+----------------------------+-----+
    | ml_generate_text_llm_result            | ml_generate_text_rai_result                  | ml_generate_text_status | prompt                     | ... |
    +----------------------------------------+----------------------------------------------+-------------------------+----------------------------+-----+
    | ## Keywords:                           | [{"category":1,"probability":1,              |                         | Extract the key words from |     |
    |                                        | "probability_score":0.29391089,"severity":1, |                         | the text below: I had to   |     |
    | * **Negative sentiment:**              | "severity_score":0.15584777},{"category":2,  |                         | see this on the British    |     |
    | "terribly bad acting", "dumb           | "probability":1,"probability_score":         |                         | Airways plane. It was      |     |
    | story", "not even a kid would          | 0.061311536,"severity":1,"severity_score":   |                         | terribly bad acting and    |     |
    | enjoy this", "switch off"              | 0.10320505},{"category":3,"probability":2,   |                         | a dumb story. Not even     |     |
    | * **Context:** "British                | "probability_score":0.60340...               |                         | a kid would enjoy this...  |     |
    +----------------------------------------+----------------------------------------------+-------------------------+----------------------------+-----+
    | ## Key words:                          | [{"category":1,"probability":1,              |                         | Extract the key words from |     |
    |                                        | "probability_score":0.16968086,"severity":1, |                         | the text below: This is    |     |
    | * **Movie:** The Real Howard Spitz     | "severity_score":0.13386749},{"category":2,  |                         | a family movie that was    |     |
    | * **Genre:** Family movie              | "probability":1,"probability_score":         |                         | broadcast on my local      |     |
    | * **Broadcast:** ITV, 1.00             | 0.14841709,"severity":1,"severity_score":    |                         | ITV station at 1.00 am a   |     |
    | am                                     | 0.062674366},{"category":3,"probability":1,  |                         | couple of nights ago.      |     |
    | - ...                                  | "probability_score":0.38116196,...           |                         | This might be a strange... |     |
    +----------------------------------------+----------------------------------------------+-------------------------+----------------------------+-----+
    

    I risultati includono le seguenti colonne:

    • ml_generate_text_llm_result: il testo generato.
    • ml_generate_text_rai_result: gli attributi di sicurezza, insieme alle informazioni su se i contenuti sono bloccati a causa di una delle categorie di blocco. Per ulteriori informazioni sugli attributi di sicurezza, vedi API Vertex PaLM.
    • ml_generate_text_status: lo stato della risposta dell'API per la riga corrispondente. Se l'operazione è riuscita, questo valore è vuoto.
    • prompt: il prompt utilizzato per l'estrazione delle parole chiave.
    • Tutte le colonne della tabella bigquery-public-data.imdb.reviews.

Esegui analisi del sentiment

Esegui l'analisi del sentiment sulle recensioni dei film IMDB utilizzando il modello remoto e la funzione ML.GENERATE_TEXT:

  1. Nella console Google Cloud, vai alla pagina BigQuery.

    Vai a BigQuery

  2. Nell'editor query, esegui la seguente istruzione per eseguire il sentiment sull'analisi di cinque recensioni di film:

    SELECT
      ml_generate_text_result['candidates'][0]['content'] AS generated_text,
      ml_generate_text_result['candidates'][0]['safety_ratings']
        AS safety_ratings,
      * EXCEPT (ml_generate_text_result)
    FROM
      ML.GENERATE_TEXT(
        MODEL `bqml_tutorial.gemini_model`,
        (
          SELECT
            CONCAT(
              'perform sentiment analysis on the following text, return one the following categories: positive, negative: ',
              review) AS prompt,
            *
          FROM
            `bigquery-public-data.imdb.reviews`
          LIMIT 5
        ),
        STRUCT(
          0.2 AS temperature,
          100 AS max_output_tokens));

    L'output è simile al seguente, con le colonne non generate omesse per chiarezza:

    +--------------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    | generated_text                             | safety_ratings                              | ml_generate_text_status | prompt                     | ... |
    +--------------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    | {"parts":[{"text":"## Sentiment Analysis:  | [{"category":1,"probability":1,             |                         | perform sentiment analysis |     |
    | Negative \n\nThis text expresses a         | "probability_score":0.33895186,             |                         | on the following text,     |     |
    | strongly negative sentiment towards the    | "severity":1,"severity_score":0.10521054},  |                         | return one the following   |     |
    | movie. Here's why:\n\n* **Negative         | {"category":2,"probability":1,              |                         | negative: I  had to see    |     |
    | like \"terribly,\" \"dumb,\" and           | "probability_score":0.069163561,"severity"  |                         | this on the British        |     | 
    | \"not even\" to describe the acting...     | :1,"severity_score":0.093512312},...        |                         | Airways plane. It was...   |     | 
    +--------------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    | {"parts":[{"text":"## Sentiment Analysis:  | [{"category":1,"probability":1,             |                         | perform sentiment analysis |     |
    | Negative \n\nThis review expresses a       | "probability_score":0.35644665,             |                         | on the following text,     |     |
    | predominantly negative sentiment towards   | "severity":1,"severity_score":0.15253653},  |                         | return one the following   |     |
    | the movie \"The Real Howard Spitz.\"       | {"category":2,"probability":1,              |                         | categories: positive,      |     |
    | Here's why:\n\n* **Criticism of the film's | "probability_score":0.063948415,"severity"  |                         | negative: This is a family |     |
    | premise:** The reviewer finds it strange   | :1,"severity_score":0.047249716},           |                         | movie that was broadcast   |     |
    | that a film about a children's author...   | {"category":3,"probability":2,...           |                         | on my local ITV station... |     |
    +--------------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    

    I risultati includono le stesse colonne descritte per Eseguire l'estrazione delle parole chiave.

Esegui la pulizia

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.