Genera testo utilizzando un modello Gemini e la funzione ML.GENERATE_TEXT
Questo tutorial mostra come creare un
modello remoto
che si basa
gemini-1.0-pro-002
,
e quindi come utilizzarlo con
Funzione ML.GENERATE_TEXT
estrarre parole chiave ed eseguire l'analisi del sentiment sulle recensioni dei film
la tabella pubblica bigquery-public-data.imdb.reviews
.
Autorizzazioni obbligatorie
- Per creare il set di dati, devi disporre dell'autorizzazione
bigquery.datasets.create
Identity and Access Management (IAM). Per creare la risorsa di connessione, sono necessarie le seguenti autorizzazioni IAM:
bigquery.connections.create
bigquery.connections.get
Per concedere le autorizzazioni all'account di servizio della connessione, è necessario il seguente autorizzazione:
resourcemanager.projects.setIamPolicy
Per creare il modello, devi disporre delle seguenti autorizzazioni:
bigquery.jobs.create
bigquery.models.create
bigquery.models.getData
bigquery.models.updateData
bigquery.connections.delegate
Per eseguire l'inferenza, devi disporre delle seguenti autorizzazioni:
bigquery.models.getData
bigquery.jobs.create
Costi
In questo documento utilizzi i seguenti componenti fatturabili di Google Cloud:
- BigQuery ML: You incur costs for the data that you process in BigQuery.
- Vertex AI: You incur costs for calls to the Vertex AI service that's represented by the remote model.
Per generare una stima dei costi basata sull'utilizzo previsto,
utilizza il Calcolatore prezzi.
Per ulteriori informazioni sui prezzi di BigQuery, consulta la sezione Prezzi di BigQuery della documentazione di BigQuery.
Per ulteriori informazioni sui prezzi di Vertex AI, consulta Prezzi di Vertex AI .
Prima di iniziare
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery, BigQuery Connection, and Vertex AI APIs.
Crea un set di dati
Crea un set di dati BigQuery per archiviare il tuo modello ML:
Nella console Google Cloud, vai alla pagina BigQuery.
Nel riquadro Explorer, fai clic sul nome del tuo progetto.
Fai clic su
Visualizza azioni > Crea set di dati.Nella pagina Crea set di dati:
In ID set di dati, inserisci
bqml_tutorial
.Per Tipo di località, seleziona Più regioni e poi Stati Uniti (più regioni negli Stati Uniti).
I set di dati pubblici sono archiviati nella
US
multiregione. Per semplicità, per archiviare il set di dati nella stessa posizione.Lascia invariate le restanti impostazioni predefinite e fai clic su Crea set di dati.
Crea una connessione
Crea un Connessione alle risorse cloud e recuperare l'account di servizio della connessione. Crea la connessione nella stessa posizione del set di dati creato nel passaggio precedente.
Seleziona una delle seguenti opzioni:
Console
Vai alla pagina BigQuery.
Per creare una connessione, fai clic su
Aggiungi e poi su Connessioni a origini dati esterne.Nell'elenco Tipo di connessione, seleziona Modelli remoti di Vertex AI, funzioni remote e BigLake (risorsa Cloud).
Nel campo ID connessione, inserisci un nome per la connessione.
Fai clic su Crea connessione.
Fai clic su Vai alla connessione.
Nel riquadro Informazioni sulla connessione, copia l'ID account di servizio da utilizzare in una passaggio successivo.
bq
In un ambiente a riga di comando, crea una connessione:
bq mk --connection --location=REGION --project_id=PROJECT_ID \ --connection_type=CLOUD_RESOURCE CONNECTION_ID
Il parametro
--project_id
sostituisce il progetto predefinito.Sostituisci quanto segue:
REGION
: il tuo regione di connessionePROJECT_ID
: l'ID del tuo progetto Google CloudCONNECTION_ID
: un ID per connessione
Quando crei una risorsa di connessione, BigQuery crea di account di servizio di sistema univoco e lo associa alla connessione.
Risoluzione dei problemi: se ricevi il seguente errore di connessione, aggiorna Google Cloud SDK:
Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
Recupera e copia l'ID account di servizio per utilizzarlo in un secondo momento passaggio:
bq show --connection PROJECT_ID.REGION.CONNECTION_ID
L'output è simile al seguente:
name properties 1234.REGION.CONNECTION_ID {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
Terraform
Aggiungi la seguente sezione al tuo file main.tf
.
## This creates a cloud resource connection. ## Note: The cloud resource nested object has only one output only field - serviceAccountId. resource "google_bigquery_connection" "connection" { connection_id = "CONNECTION_ID" project = "PROJECT_ID" location = "REGION" cloud_resource {} }
CONNECTION_ID
: un ID per connessionePROJECT_ID
: l'ID del tuo progetto Google CloudREGION
: la regione di connessione
Concedi le autorizzazioni all'account di servizio della connessione
Concedi all'account di servizio della connessione il ruolo Vertex AI User. Devi concedere questo ruolo nello stesso progetto che hai creato o selezionato nella sezione Prima di iniziare. Se concedi il ruolo in un progetto diverso, viene visualizzato l'errore bqcx-1234567890-xxxx@gcp-sa-bigquery-condel.iam.gserviceaccount.com does not have the permission to access resource
.
Per concedere il ruolo:
Vai alla pagina IAM e amministrazione.
Fai clic su
Concedi l'accesso.Nel campo Nuove entità, inserisci l'ID account di servizio che copiato in precedenza.
Nel campo Seleziona un ruolo, scegli Vertex AI, quindi seleziona Ruolo utente Vertex AI.
Fai clic su Salva.
Crea il modello remoto
Crea un modello remoto che rappresenta un modello Vertex AI ospitato modello:
Nella console Google Cloud, vai alla pagina BigQuery.
Nell'editor di query, esegui la seguente istruzione:
CREATE OR REPLACE MODEL `bqml_tutorial.gemini_model` REMOTE WITH CONNECTION `LOCATION.CONNECTION_ID` OPTIONS (ENDPOINT = 'gemini-1.0-pro-002');
Sostituisci quanto segue:
LOCATION
: la posizione della connessioneCONNECTION_ID
: l'ID del tuo Connessione BigQueryQuando visualizzi i dettagli della connessione nella console Google Cloud, questo è il valore nell'ultima sezione dell'ID connessione visualizzato in ID connessione, ad esempio
projects/myproject/locations/connection_location/connections/myconnection
Il completamento della query richiede diversi secondi, dopodiché il modello
gemini_model
compare nel set di dati bqml_tutorial
nel riquadro Explorer.
Poiché la query utilizza un'istruzione CREATE MODEL
per creare un modello,
non sono risultati di query.
Esegui l'estrazione delle parole chiave
Esegui l'estrazione delle parole chiave dalle recensioni dei film di IMDB utilizzando il modello remoto e la funzione ML.GENERATE_TEXT
:
Nella console Google Cloud, vai alla pagina BigQuery.
Nell'editor query, inserisci la seguente istruzione per eseguire parole chiave di video in base a cinque recensioni di film:
SELECT ml_generate_text_result['candidates'][0]['content'] AS generated_text, ml_generate_text_result['candidates'][0]['safety_ratings'] AS safety_ratings, * EXCEPT (ml_generate_text_result) FROM ML.GENERATE_TEXT( MODEL `bqml_tutorial.gemini_model`, ( SELECT CONCAT('Extract the key words from the text below: ', review) AS prompt, * FROM `bigquery-public-data.imdb.reviews` LIMIT 5 ), STRUCT( 0.2 AS temperature, 100 AS max_output_tokens));
L'output è simile al seguente, con le colonne non generate omesse per chiarezza:
+----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+ | generated_text | safety_ratings | ml_generate_text_status | prompt | ... | +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+ | {"parts":[{"text":"## Key words:\n\n* | [{"category":1,"probability":1, | | Extract the key words from | | | **Negative sentiment:** \"terribly | "probability_score":0.28856909, | | the text below: I had to | | | bad acting\", \"dumb story\", \"not | "severity":1,"severity_score":0.1510278}, | | see this on the British | | | even a kid would enjoy this\", | {"category":2,"probability":1, | | Airways plane. It was | | | \"something to switch off\"\n* | "probability_score":0.062445287, | | terribly bad acting and | | | **Context:** \"British Airways plane\" | "severity":1,"severity_score":0.10393038}, | | a dumb story. Not even | | | \n* **Genre:** \"movie\" (implied)... | {"category":3,"probability":2,... | | a kid would enjoy this... | | +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+ | {"parts":[{"text":"## Key words:\n\n* | [{"category":1,"probability":1, | | Extract the key words from | | | **Movie:** The Real Howard Spitz\n* | "probability_score":0.2995148,"severity":2, | | the text below: This is | | | **Genre:** Family movie\n* | "severity_score":0.22354652}, | | a family movie that was | | | **Broadcast:** ITV station, 1.00 am\n* | {"category":2,"probability":1," | | broadcast on my local | | | **Director:** Vadim Jean\n* | probability_score":0.13072868, | | ITV station at 1.00 am a | | | **Main character:** Howard Spitz, | "severity":1,"severity_score":0.07030385}, | | couple of nights ago. | | | a children's author who hates... | {"category":3,"probability":2," ... | | This might be a strange... | | +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
I risultati includono le seguenti colonne:
generated_text
: il testo generato.safety_ratings
: gli attributi di sicurezza, insieme alle informazioni su se i contenuti sono bloccati a causa di una delle categorie di blocco. Per ulteriori informazioni sugli attributi di sicurezza, vedi API Vertex PaLM.ml_generate_text_status
: lo stato della risposta dell'API per la riga corrispondente. Se l'operazione è riuscita, questo valore è vuoto.prompt
: il prompt utilizzato per l'analisi del sentiment.- Tutte le colonne della tabella
bigquery-public-data.imdb.reviews
.
Facoltativo: anziché analizzare manualmente il codice JSON restituito dalla funzione, che hai fatto nel passaggio precedente, utilizza l'argomento
flatten_json_output
per restituiscono il testo generato e gli attributi di sicurezza in colonne separate.Nell'editor di query, esegui la seguente istruzione:
SELECT * FROM ML.GENERATE_TEXT( MODEL `bqml_tutorial.gemini_model`, ( SELECT CONCAT('Extract the key words from the text below: ', review) AS prompt, * FROM `bigquery-public-data.imdb.reviews` LIMIT 5 ), STRUCT( 0.2 AS temperature, 100 AS max_output_tokens, TRUE AS flatten_json_output));
L'output è simile al seguente, con le colonne non generate omesse per chiarezza:
+----------------------------------------+----------------------------------------------+-------------------------+----------------------------+-----+ | ml_generate_text_llm_result | ml_generate_text_rai_result | ml_generate_text_status | prompt | ... | +----------------------------------------+----------------------------------------------+-------------------------+----------------------------+-----+ | ## Keywords: | [{"category":1,"probability":1, | | Extract the key words from | | | | "probability_score":0.29391089,"severity":1, | | the text below: I had to | | | * **Negative sentiment:** | "severity_score":0.15584777},{"category":2, | | see this on the British | | | "terribly bad acting", "dumb | "probability":1,"probability_score": | | Airways plane. It was | | | story", "not even a kid would | 0.061311536,"severity":1,"severity_score": | | terribly bad acting and | | | enjoy this", "switch off" | 0.10320505},{"category":3,"probability":2, | | a dumb story. Not even | | | * **Context:** "British | "probability_score":0.60340... | | a kid would enjoy this... | | +----------------------------------------+----------------------------------------------+-------------------------+----------------------------+-----+ | ## Key words: | [{"category":1,"probability":1, | | Extract the key words from | | | | "probability_score":0.16968086,"severity":1, | | the text below: This is | | | * **Movie:** The Real Howard Spitz | "severity_score":0.13386749},{"category":2, | | a family movie that was | | | * **Genre:** Family movie | "probability":1,"probability_score": | | broadcast on my local | | | * **Broadcast:** ITV, 1.00 | 0.14841709,"severity":1,"severity_score": | | ITV station at 1.00 am a | | | am | 0.062674366},{"category":3,"probability":1, | | couple of nights ago. | | | - ... | "probability_score":0.38116196,... | | This might be a strange... | | +----------------------------------------+----------------------------------------------+-------------------------+----------------------------+-----+
I risultati includono le seguenti colonne:
ml_generate_text_llm_result
: il testo generato.ml_generate_text_rai_result
: gli attributi di sicurezza, insieme alle informazioni su se i contenuti sono bloccati a causa di una delle categorie di blocco. Per ulteriori informazioni sugli attributi di sicurezza, vedi API Vertex PaLM.ml_generate_text_status
: lo stato della risposta dell'API per la riga corrispondente. Se l'operazione è riuscita, questo valore è vuoto.prompt
: il prompt utilizzato per l'estrazione delle parole chiave.- Tutte le colonne della tabella
bigquery-public-data.imdb.reviews
.
Esegui analisi del sentiment
Esegui l'analisi del sentiment sulle recensioni dei film IMDB utilizzando il modello remoto e la funzione ML.GENERATE_TEXT
:
Nella console Google Cloud, vai alla pagina BigQuery.
Nell'editor query, esegui la seguente istruzione per eseguire il sentiment sull'analisi di cinque recensioni di film:
SELECT ml_generate_text_result['candidates'][0]['content'] AS generated_text, ml_generate_text_result['candidates'][0]['safety_ratings'] AS safety_ratings, * EXCEPT (ml_generate_text_result) FROM ML.GENERATE_TEXT( MODEL `bqml_tutorial.gemini_model`, ( SELECT CONCAT( 'perform sentiment analysis on the following text, return one the following categories: positive, negative: ', review) AS prompt, * FROM `bigquery-public-data.imdb.reviews` LIMIT 5 ), STRUCT( 0.2 AS temperature, 100 AS max_output_tokens));
L'output è simile al seguente, con le colonne non generate omesse per chiarezza:
+--------------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+ | generated_text | safety_ratings | ml_generate_text_status | prompt | ... | +--------------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+ | {"parts":[{"text":"## Sentiment Analysis: | [{"category":1,"probability":1, | | perform sentiment analysis | | | Negative \n\nThis text expresses a | "probability_score":0.33895186, | | on the following text, | | | strongly negative sentiment towards the | "severity":1,"severity_score":0.10521054}, | | return one the following | | | movie. Here's why:\n\n* **Negative | {"category":2,"probability":1, | | negative: I had to see | | | like \"terribly,\" \"dumb,\" and | "probability_score":0.069163561,"severity" | | this on the British | | | \"not even\" to describe the acting... | :1,"severity_score":0.093512312},... | | Airways plane. It was... | | +--------------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+ | {"parts":[{"text":"## Sentiment Analysis: | [{"category":1,"probability":1, | | perform sentiment analysis | | | Negative \n\nThis review expresses a | "probability_score":0.35644665, | | on the following text, | | | predominantly negative sentiment towards | "severity":1,"severity_score":0.15253653}, | | return one the following | | | the movie \"The Real Howard Spitz.\" | {"category":2,"probability":1, | | categories: positive, | | | Here's why:\n\n* **Criticism of the film's | "probability_score":0.063948415,"severity" | | negative: This is a family | | | premise:** The reviewer finds it strange | :1,"severity_score":0.047249716}, | | movie that was broadcast | | | that a film about a children's author... | {"category":3,"probability":2,... | | on my local ITV station... | | +--------------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
I risultati includono le stesse colonne descritte per Eseguire l'estrazione delle parole chiave.
Esegui la pulizia
- In the Google Cloud console, go to the Manage resources page.
- In the project list, select the project that you want to delete, and then click Delete.
- In the dialog, type the project ID, and then click Shut down to delete the project.