Realiza una ejecución de prueba de una consulta

Cuando ejecutas una consulta en la herramienta de línea de comandos de bq, puedes usar la marca --dry_run para estimar la cantidad de bytes que lee la consulta. También puedes usar el parámetro dryRun cuando envíes un trabajo de consulta mediante la API o las bibliotecas cliente.

Puedes usar la estimación que muestra la ejecución de prueba para calcular los costos de consulta en la calculadora de precios. No se te cobrará por realizar la ejecución de prueba.

Permisos necesarios

Como mínimo, para ejecutar un trabajo de consulta, debes tener permisos bigquery.jobs.create. Para que el trabajo de consulta se complete con éxito, también debes tener acceso a las tablas o vistas a las que hace referencia la consulta. El acceso a las tablas o vistas se puede otorgar en los siguientes niveles, que se ordenan en función del rango de recursos permitidos (del más grande al más pequeño):

Las siguientes funciones predefinidas de IAM incluyen los permisos bigquery.jobs.create:

  • bigquery.user
  • bigquery.jobUser
  • bigquery.admin

Además, si un usuario tiene permisos bigquery.datasets.create, cuando crea un conjunto de datos, se le otorga el acceso bigquery.dataOwner. El acceso a bigquery.dataOwner permite al usuario consultar tablas y vistas del conjunto de datos.

Para obtener más información sobre las funciones de Cloud IAM en BigQuery, consulta Funciones y permisos predefinidos.

Realiza ejecuciones de prueba

Puedes realizar una ejecución de prueba de un trabajo de consulta mediante las siguientes opciones:

  • La marca --dry_run con el comando query en la herramienta de línea de comandos de bq
  • El parámetro dryRun en la configuración de trabajo cuando usas la API o las bibliotecas cliente

Realiza una ejecución de prueba

Para realizar una ejecución de prueba, haz lo siguiente:

Console

  1. Ve a la página de BigQuery en Google Cloud Console.

    Ir a BigQuery

  2. Ingresa tu consulta en el Editor de consultas.

    Si la consulta es válida, aparecerá de forma automática una marca de verificación junto con la cantidad de datos que la consulta procesará. Si la consulta no es válida, aparece un signo de exclamación junto con un mensaje de error.

bq

Ingresa una consulta como la siguiente con la marca --dry_run.

bq query \
--use_legacy_sql=false \
--dry_run \
'SELECT
   COUNTRY,
   AIRPORT,
   IATA
 FROM
   `project_id`.dataset.airports
 LIMIT
   1000'
 

El comando genera la siguiente respuesta:

Query successfully validated. Assuming the tables are not modified,
running this query will process 10918 bytes of data.

API

Para realizar una ejecución de prueba mediante la API, envía un trabajo de consulta con dryRun configurado como true en el tipo JobConfiguration.

Go

Antes de probar este ejemplo, sigue las instrucciones de configuración para Go incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Si deseas obtener más información, consulta la documentación de referencia de la API de Go de BigQuery.

import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/bigquery"
)

// queryDryRun demonstrates issuing a dry run query to validate query structure and
// provide an estimate of the bytes scanned.
func queryDryRun(w io.Writer, projectID string) error {
	// projectID := "my-project-id"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %v", err)
	}
	defer client.Close()

	q := client.Query(`
	SELECT
		name,
		COUNT(*) as name_count
	FROM ` + "`bigquery-public-data.usa_names.usa_1910_2013`" + `
	WHERE state = 'WA'
	GROUP BY name`)
	q.DryRun = true
	// Location must match that of the dataset(s) referenced in the query.
	q.Location = "US"

	job, err := q.Run(ctx)
	if err != nil {
		return err
	}
	// Dry run is not asynchronous, so get the latest status and statistics.
	status := job.LastStatus()
	if err := status.Err(); err != nil {
		return err
	}
	fmt.Fprintf(w, "This query will process %d bytes\n", status.Statistics.TotalBytesProcessed)
	return nil
}

Java

Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Java.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Job;
import com.google.cloud.bigquery.JobInfo;
import com.google.cloud.bigquery.JobStatistics;
import com.google.cloud.bigquery.QueryJobConfiguration;

// Sample to run dry query on the table
public class QueryDryRun {

  public static void runQueryDryRun() {
    String query =
        "SELECT name, COUNT(*) as name_count "
            + "FROM `bigquery-public-data.usa_names.usa_1910_2013` "
            + "WHERE state = 'WA' "
            + "GROUP BY name";
    queryDryRun(query);
  }

  public static void queryDryRun(String query) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      QueryJobConfiguration queryConfig =
          QueryJobConfiguration.newBuilder(query).setDryRun(true).setUseQueryCache(false).build();

      Job job = bigquery.create(JobInfo.of(queryConfig));
      JobStatistics.QueryStatistics statistics = job.getStatistics();

      System.out.println(
          "Query dry run performed successfully." + statistics.getTotalBytesProcessed());
    } catch (BigQueryException e) {
      System.out.println("Query not performed \n" + e.toString());
    }
  }
}

Node.js

Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la Documentación de referencia de la API de Node.js de BigQuery.

// Import the Google Cloud client library
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function queryDryRun() {
  // Runs a dry query of the U.S. given names dataset for the state of Texas.

  const query = `SELECT name
    FROM \`bigquery-public-data.usa_names.usa_1910_2013\`
    WHERE state = 'TX'
    LIMIT 100`;

  // For all options, see https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs/query
  const options = {
    query: query,
    // Location must match that of the dataset(s) referenced in the query.
    location: 'US',
    dryRun: true,
  };

  // Run the query as a job
  const [job] = await bigquery.createQueryJob(options);

  // Print the status and statistics
  console.log('Status:');
  console.log(job.metadata.status);
  console.log('\nJob Statistics:');
  console.log(job.metadata.statistics);
}

Python

Para realizar una ejecución de prueba con la biblioteca cliente de Python, configura la propiedad QueryJobConfig.dry_run como True. Client.query() siempre muestra un QueryJob completo cuando se proporciona una configuración de consulta de ejecución de prueba.

Antes de probar esta muestra, sigue las instrucciones de configuración para Python incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Si deseas obtener más información, consulta la documentación de referencia de la API de Python de BigQuery.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

job_config = bigquery.QueryJobConfig(dry_run=True, use_query_cache=False)

# Start the query, passing in the extra configuration.
query_job = client.query(
    (
        "SELECT name, COUNT(*) as name_count "
        "FROM `bigquery-public-data.usa_names.usa_1910_2013` "
        "WHERE state = 'WA' "
        "GROUP BY name"
    ),
    job_config=job_config,
)  # Make an API request.

# A dry run query completes immediately.
print("This query will process {} bytes.".format(query_job.total_bytes_processed))