Create and set up a Cloud resource connection

As a BigQuery administrator, you can create a Cloud resource connection that enables data analysts to perform the following tasks:

For more information about connections, see Introduction to connections.

Before you begin

Location consideration

When you use Cloud Storage to store data files, we recommend that you use Cloud Storage single-region or dual-region buckets for optimal performance, not multi-region buckets.

Create Cloud resource connections

BigLake uses a connection to access Cloud Storage. You can use this connection with a single table or a group of tables.

Select one of the following options:

Console

  1. Go to the BigQuery page.

    Go to BigQuery

  2. To create a connection, click Add, and then click Connections to external data sources.

  3. In the Connection type list, select Vertex AI remote models, remote functions and BigLake (Cloud Resource).

  4. In the Connection ID field, enter a name for your connection.

  5. Click Create connection.

  6. Click Go to connection.

  7. In the Connection info pane, copy the service account ID for use in a later step.

bq

  1. In a command-line environment, create a connection:

    bq mk --connection --location=REGION --project_id=PROJECT_ID \
        --connection_type=CLOUD_RESOURCE CONNECTION_ID
    

    The --project_id parameter overrides the default project.

    Replace the following:

    • REGION: your connection region
    • PROJECT_ID: your Google Cloud project ID
    • CONNECTION_ID: an ID for your connection

    When you create a connection resource, BigQuery creates a unique system service account and associates it with the connection.

    Troubleshooting: If you get the following connection error, update the Google Cloud SDK:

    Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
    
  2. Retrieve and copy the service account ID for use in a later step:

    bq show --connection PROJECT_ID.REGION.CONNECTION_ID
    

    The output is similar to the following:

    name                          properties
    1234.REGION.CONNECTION_ID     {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
    

Terraform

Use the google_bigquery_connection resource.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

The following example creates a Cloud resource connection named my_cloud_resource_connection in the US region:


# This queries the provider for project information.
data "google_project" "default" {}

# This creates a cloud resource connection in the US region named my_cloud_resource_connection.
# Note: The cloud resource nested object has only one output field - serviceAccountId.
resource "google_bigquery_connection" "default" {
  connection_id = "my_cloud_resource_connection"
  project       = data.google_project.default.project_id
  location      = "US"
  cloud_resource {}
}

To apply your Terraform configuration in a Google Cloud project, complete the steps in the following sections.

Prepare Cloud Shell

  1. Launch Cloud Shell.
  2. Set the default Google Cloud project where you want to apply your Terraform configurations.

    You only need to run this command once per project, and you can run it in any directory.

    export GOOGLE_CLOUD_PROJECT=PROJECT_ID

    Environment variables are overridden if you set explicit values in the Terraform configuration file.

Prepare the directory

Each Terraform configuration file must have its own directory (also called a root module).

  1. In Cloud Shell, create a directory and a new file within that directory. The filename must have the .tf extension—for example main.tf. In this tutorial, the file is referred to as main.tf.
    mkdir DIRECTORY && cd DIRECTORY && touch main.tf
  2. If you are following a tutorial, you can copy the sample code in each section or step.

    Copy the sample code into the newly created main.tf.

    Optionally, copy the code from GitHub. This is recommended when the Terraform snippet is part of an end-to-end solution.

  3. Review and modify the sample parameters to apply to your environment.
  4. Save your changes.
  5. Initialize Terraform. You only need to do this once per directory.
    terraform init

    Optionally, to use the latest Google provider version, include the -upgrade option:

    terraform init -upgrade

Apply the changes

  1. Review the configuration and verify that the resources that Terraform is going to create or update match your expectations:
    terraform plan

    Make corrections to the configuration as necessary.

  2. Apply the Terraform configuration by running the following command and entering yes at the prompt:
    terraform apply

    Wait until Terraform displays the "Apply complete!" message.

  3. Open your Google Cloud project to view the results. In the Google Cloud console, navigate to your resources in the UI to make sure that Terraform has created or updated them.

Grant access to the service account

To create remote functions, you must grant required roles to Cloud Run functions or Cloud Run.

To connect to Cloud Storage, you must give the new connection read-only access to Cloud Storage so that BigQuery can access files on behalf of users.

Select one of the following options:

Console

We recommend that you grant the connection resource service account the Storage Object Viewer IAM role (roles/storage.objectViewer), which lets the service account access Cloud Storage buckets.

  1. Go to the IAM & Admin page.

    Go to IAM & Admin

  2. Click Add.

    The Add principals dialog opens.

  3. In the New principals field, enter the service account ID that you copied earlier.

  4. In the Select a role field, select Cloud Storage, and then select Storage Object Viewer.

  5. Click Save.

gcloud

Use the gcloud storage buckets add-iam-policy-binding command:

gcloud storage buckets add-iam-policy-binding gs://BUCKET \
--member=serviceAccount:MEMBER \
--role=roles/storage.objectViewer

Replace the following:

  • BUCKET: the name of your storage bucket.
  • MEMBER: the service account ID that you copied earlier.

For more information, see Add a principal to a bucket-level policy.

Terraform

Use the google_bigquery_connection resource.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

The following example grants IAM role access to the service account of the Cloud resource connection:


# This queries the provider for project information.
data "google_project" "default" {}

# This creates a cloud resource connection in the US region named my_cloud_resource_connection.
# Note: The cloud resource nested object has only one output field - serviceAccountId.
resource "google_bigquery_connection" "default" {
  connection_id = "my_cloud_resource_connection"
  project       = data.google_project.default.project_id
  location      = "US"
  cloud_resource {}
}

## This grants IAM role access to the service account of the connection created in the previous step.
resource "google_project_iam_member" "connectionPermissionGrant" {
  project = data.google_project.default.project_id
  role    = "roles/storage.objectViewer"
  member  = "serviceAccount:${google_bigquery_connection.default.cloud_resource[0].service_account_id}"
}

To apply your Terraform configuration in a Google Cloud project, complete the steps in the following sections.

Prepare Cloud Shell

  1. Launch Cloud Shell.
  2. Set the default Google Cloud project where you want to apply your Terraform configurations.

    You only need to run this command once per project, and you can run it in any directory.

    export GOOGLE_CLOUD_PROJECT=PROJECT_ID

    Environment variables are overridden if you set explicit values in the Terraform configuration file.

Prepare the directory

Each Terraform configuration file must have its own directory (also called a root module).

  1. In Cloud Shell, create a directory and a new file within that directory. The filename must have the .tf extension—for example main.tf. In this tutorial, the file is referred to as main.tf.
    mkdir DIRECTORY && cd DIRECTORY && touch main.tf
  2. If you are following a tutorial, you can copy the sample code in each section or step.

    Copy the sample code into the newly created main.tf.

    Optionally, copy the code from GitHub. This is recommended when the Terraform snippet is part of an end-to-end solution.

  3. Review and modify the sample parameters to apply to your environment.
  4. Save your changes.
  5. Initialize Terraform. You only need to do this once per directory.
    terraform init

    Optionally, to use the latest Google provider version, include the -upgrade option:

    terraform init -upgrade

Apply the changes

  1. Review the configuration and verify that the resources that Terraform is going to create or update match your expectations:
    terraform plan

    Make corrections to the configuration as necessary.

  2. Apply the Terraform configuration by running the following command and entering yes at the prompt:
    terraform apply

    Wait until Terraform displays the "Apply complete!" message.

  3. Open your Google Cloud project to view the results. In the Google Cloud console, navigate to your resources in the UI to make sure that Terraform has created or updated them.

Share connections with users

You can grant the following roles to let users query data and manage connections:

  • roles/bigquery.connectionUser: enables users to use connections to connect with external data sources and run queries on them.

  • roles/bigquery.connectionAdmin: enables users to manage connections.

For more information about IAM roles and permissions in BigQuery, see Predefined roles and permissions.

Select one of the following options:

Console

  1. Go to the BigQuery page.

    Go to BigQuery

    Connections are listed in your project, in a group called External connections.

  2. In the Explorer pane, click your project name > External connections > connection.

  3. In the Details pane, click Share to share a connection. Then do the following:

    1. In the Connection permissions dialog, share the connection with other principals by adding or editing principals.

    2. Click Save.

bq

You cannot share a connection with the bq command-line tool. To share a connection, use the Google Cloud console or the BigQuery Connections API method to share a connection.

API

Use the projects.locations.connections.setIAM method in the BigQuery Connections REST API reference section, and supply an instance of the policy resource.

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

import com.google.api.resourcenames.ResourceName;
import com.google.cloud.bigquery.connection.v1.ConnectionName;
import com.google.cloud.bigqueryconnection.v1.ConnectionServiceClient;
import com.google.iam.v1.Binding;
import com.google.iam.v1.Policy;
import com.google.iam.v1.SetIamPolicyRequest;
import java.io.IOException;

// Sample to share connections
public class ShareConnection {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "MY_PROJECT_ID";
    String location = "MY_LOCATION";
    String connectionId = "MY_CONNECTION_ID";
    shareConnection(projectId, location, connectionId);
  }

  static void shareConnection(String projectId, String location, String connectionId)
      throws IOException {
    try (ConnectionServiceClient client = ConnectionServiceClient.create()) {
      ResourceName resource = ConnectionName.of(projectId, location, connectionId);
      Binding binding =
          Binding.newBuilder()
              .addMembers("group:example-analyst-group@google.com")
              .setRole("roles/bigquery.connectionUser")
              .build();
      Policy policy = Policy.newBuilder().addBindings(binding).build();
      SetIamPolicyRequest request =
          SetIamPolicyRequest.newBuilder()
              .setResource(resource.toString())
              .setPolicy(policy)
              .build();
      client.setIamPolicy(request);
      System.out.println("Connection shared successfully");
    }
  }
}

What's next