Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
Crea y consulta tablas de metastore desde Spark
Puedes consultar tablas de Apache Spark Iceberg en un notebook de BigQuery con motores de código abierto, como Spark. Estas tablas son tablas de Iceberg normales con metadatos almacenados en BigLake Metastore. La misma tabla se puede consultar desde BigQuery y Spark.
Antes de comenzar
Crea una tabla de Iceberg mientras usas Spark en un notebook de BigQuery. El esquema de la tabla se almacena en el metastore de BigLake. Por ejemplo, puedes crear la tabla con Dataproc, Dataproc Serverless o un procedimiento almacenado.
Cómo ver y consultar una tabla
Después de crear tus recursos de BigQuery en Spark, puedes verlos y consultarlos en la consola deGoogle Cloud . En el siguiente ejemplo, se muestran los pasos generales para consultar una tabla de metastore con Spark interactivo:
Usa el catálogo de Iceberg personalizado:
USE`CATALOG_NAME`;
Reemplaza lo siguiente:
CATALOG_NAME: Es el nombre del catálogo de Spark que usas con tu trabajo de SQL.
Crea un espacio de nombres:
CREATENAMESPACEIFNOTEXISTSNAMESPACE_NAME;
Reemplaza lo siguiente:
NAMESPACE_NAME: Es el nombre del espacio de nombres que hace referencia a tu tabla de Spark.
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Información o código de muestra incorrectos","incorrectInformationOrSampleCode","thumb-down"],["Faltan la información o los ejemplos que necesito","missingTheInformationSamplesINeed","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-09-04 (UTC)"],[],[],null,["# Create and query metastore tables from Spark\n============================================\n\nYou can query Apache Spark Iceberg tables in a\nBigQuery notebook using open-source engines, such as\nSpark. These tables are regular\nIceberg tables with metadata stored in BigLake metastore. The\nsame table can be queried from both BigQuery and\nSpark.\n\nBefore you begin\n----------------\n\n- Create an Iceberg table while using Spark in a BigQuery notebook. The table schema is stored in BigLake metastore. For example, you can create the table with either [Dataproc](/bigquery/docs/blms-use-dataproc), [Dataproc Serverless](/bigquery/docs/blms-use-dataproc-serverless), or a [stored procedure](/bigquery/docs/blms-use-stored-procedures).\n\nView and query a table\n----------------------\n\nAfter creating your BigQuery resources in\nSpark, you can view and query them in the\nGoogle Cloud console. The following example shows you the general\nsteps to query a metastore table using interactive Spark:\n\n1. Use the custom Iceberg catalog:\n\n ```googlesql\n USE `\u003cvar translate=\"no\"\u003eCATALOG_NAME\u003c/var\u003e`;\n ```\n\n Replace the following:\n - \u003cvar translate=\"no\"\u003eCATALOG_NAME\u003c/var\u003e: the name of the Spark catalog to that you're using with your SQL job.\n2. Create a namespace:\n\n ```googlesql\n CREATE NAMESPACE IF NOT EXISTS NAMESPACE_NAME;\n ```\n\n Replace the following:\n - \u003cvar translate=\"no\"\u003eNAMESPACE_NAME\u003c/var\u003e: the namespace name that references your Spark table.\n3. Use the created namespace:\n\n ```googlesql\n USE NAMESPACE_NAME;\n ```\n4. Create an Iceberg table:\n\n ```googlesql\n CREATE TABLE TABLE_NAME (id int, data string) USING ICEBERG;\n ```\n\n Replace the following:\n - \u003cvar translate=\"no\"\u003eTABLE_NAME\u003c/var\u003e: a name for your Iceberg table.\n5. Insert a table row:\n\n ```googlesql\n INSERT INTO TABLE_NAME VALUES (1, \"first row\");\n ```\n6. Use the Google Cloud console to do one of the following:\n\n - [View the table metadata](/bigquery/docs/running-queries#queries)\n - [Query the table](/bigquery/docs/running-queries#queries)\n\n ```googlesql\n SELECT * FROM `\u003cvar translate=\"no\"\u003eTABLE_NAME\u003c/var\u003e`;\n ```\n\nWhat's next\n-----------\n\n- Set up [additional BigLake metastore features](/bigquery/docs/blms-features)."]]