Créer des recommandations basées sur des commentaires implicites avec un modèle de factorisation matricielle


Ce tutoriel vous explique comment créer un modèle de factorisation matricielle et l'entraîner sur les données de session utilisateur Google Analytics 360 dans la table GA360_test.ga_sessions_sample publique. Vous utiliserez ensuite le modèle de factorisation matricielle pour générer des recommandations de contenu pour les utilisateurs du site.

L'entraînement du modèle à l'aide d'informations indirectes sur les préférences des clients, comme la durée de la session utilisateur, s'appelle l'entraînement avec commentaires implicites. Les modèles de factorisation matricielle sont entraînés à l'aide de l'algorithme des moindres carrés alternés pondérés lorsque vous utilisez des commentaires implicites comme données d'entraînement.

Objectifs

Ce tutoriel vous guide à travers les tâches suivantes:

  • Créer un modèle de factorisation matricielle à l'aide de l'instruction CREATE MODEL
  • Évaluer le modèle à l'aide de la fonction ML.EVALUATE.
  • Générer des recommandations de contenu pour les utilisateurs à l'aide du modèle avec la fonction ML.RECOMMEND.

Coûts

Ce tutoriel utilise des composants facturables de Google Cloud, dont :

  • BigQuery
  • BigQuery ML

Pour plus d'informations sur les coûts de BigQuery, consultez la page Tarifs de BigQuery.

Pour en savoir plus sur les coûts associés à BigQuery ML, consultez la page Tarifs de BigQuery ML.

Avant de commencer

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  5. Make sure that billing is enabled for your Google Cloud project.

  6. BigQuery est automatiquement activé dans les nouveaux projets. Pour activer BigQuery dans un projet préexistant, accédez à .

    Enable the BigQuery API.

    Enable the API

Autorisations requises

  • Pour créer l'ensemble de données, vous devez disposer de l'autorisation IAM bigquery.datasets.create.
  • Pour créer la ressource de connexion, vous devez disposer des autorisations suivantes :

    • bigquery.connections.create
    • bigquery.connections.get
  • Pour créer le modèle, vous avez besoin des autorisations suivantes :

    • bigquery.jobs.create
    • bigquery.models.create
    • bigquery.models.getData
    • bigquery.models.updateData
    • bigquery.connections.delegate
  • Pour exécuter une inférence, vous devez disposer des autorisations suivantes :

    • bigquery.models.getData
    • bigquery.jobs.create

Pour plus d'informations sur les rôles et les autorisations IAM dans BigQuery, consultez la page Présentation d'IAM.

Créer un ensemble de données

Vous allez créer un ensemble de données BigQuery pour stocker votre modèle de ML :

  1. Dans la console Google Cloud, accédez à la page "BigQuery".

    Accéder à la page "BigQuery"

  2. Dans le volet Explorateur, cliquez sur le nom de votre projet.

  3. Cliquez sur Afficher les actions > Créer un ensemble de données.

    Créer l'ensemble de données

  4. Sur la page Créer un ensemble de données, procédez comme suit :

    • Dans le champ ID de l'ensemble de données, saisissez bqml_tutorial.

    • Pour Type d'emplacement, sélectionnez Multirégional, puis sélectionnez US (plusieurs régions aux États-Unis).

      Les ensembles de données publics sont stockés dans l'emplacement multirégional US. Par souci de simplicité, stockez votre ensemble de données dans le même emplacement.

    • Conservez les autres paramètres par défaut, puis cliquez sur Créer un ensemble de données.

      Créer une page d'ensemble de données

Préparer les exemples de données

Transformez les données de la table GA360_test.ga_sessions_sample en une structure plus adaptée à l'entraînement du modèle, puis écrivez ces données dans une table BigQuery. La requête suivante calcule la durée de la session pour chaque utilisateur et pour chaque élément de contenu, que vous pouvez ensuite utiliser comme commentaires implicites pour inférer la préférence de l'utilisateur pour ce contenu.

Pour créer le tableau de données d'entraînement, procédez comme suit:

  1. Dans la console Google Cloud, accédez à la page BigQuery.

    Accéder à BigQuery

  2. Créez la table de données d'entraînement. Dans l'éditeur de requête, collez la requête suivante, puis cliquez sur Exécuter:

    CREATE OR REPLACE TABLE `bqml_tutorial.analytics_session_data`
    AS
    WITH
      visitor_page_content AS (
        SELECT
          fullVisitorID,
          (
            SELECT
              MAX(
                IF(
                  index = 10,
                  value,
                  NULL))
            FROM
              UNNEST(hits.customDimensions)
          ) AS latestContentId,
          (LEAD(hits.time, 1) OVER (PARTITION BY fullVisitorId ORDER BY hits.time ASC) - hits.time)
            AS session_duration
        FROM
          `cloud-training-demos.GA360_test.ga_sessions_sample`,
          UNNEST(hits) AS hits
        WHERE
          # only include hits on pages
          hits.type = 'PAGE'
        GROUP BY
          fullVisitorId,
          latestContentId,
          hits.time
      )
    # aggregate web stats
    SELECT
      fullVisitorID AS visitorId,
      latestContentId AS contentId,
      SUM(session_duration) AS session_duration
    FROM
      visitor_page_content
    WHERE
      latestContentId IS NOT NULL
    GROUP BY
      fullVisitorID,
      latestContentId
    HAVING
      session_duration > 0
    ORDER BY
      latestContentId;
  3. Afficher un sous-ensemble des données d'entraînement. Dans l'éditeur de requête, collez la requête suivante, puis cliquez sur Exécuter:

    SELECT * FROM `bqml_tutorial.analytics_session_data` LIMIT 5;

    Le résultat doit ressembler à ce qui suit :

    +---------------------+-----------+------------------+
    | visitorId           | contentId | session_duration |
    +---------------------+-----------+------------------+
    | 7337153711992174438 | 100074831 | 44652            |
    +---------------------+-----------+------------------+
    | 5190801220865459604 | 100170790 | 121420           |
    +---------------------+-----------+------------------+
    | 2293633612703952721 | 100510126 | 47744            |
    +---------------------+-----------+------------------+
    | 5874973374932455844 | 100510126 | 32109            |
    +---------------------+-----------+------------------+
    | 1173698801255170595 | 100676857 | 10512            |
    +---------------------+-----------+------------------+
    

Créer le modèle

Créez un modèle de factorisation matricielle et entraînez-le sur les données de la table analytics_session_data. Le modèle est entraîné pour prédire un niveau de confiance pour chaque paire visitorId-contentId. L'indice de fiabilité est créé en recentrant les données et en appliquant une mise à l'échelle en fonction de la durée moyenne de session. Les enregistrements dont la durée de session est supérieure à 3,33 fois la médiane sont filtrés en tant qu'anomalies.

L'instruction CREATE MODEL suivante utilise ces colonnes pour générer des recommandations:

  • visitorId : ID du visiteur.
  • contentId : ID de contenu.
  • rating : note implicite comprise entre 0 et 1, calculée pour chaque paire visiteur-contenu, centrée et mise à l'échelle.
  1. Dans la console Google Cloud, accédez à la page BigQuery.

    Accéder à BigQuery

  2. Dans l'éditeur de requête, collez la requête suivante, puis cliquez sur Exécuter:

    CREATE OR REPLACE MODEL `bqml_tutorial.mf_implicit`
      OPTIONS (
        MODEL_TYPE = 'matrix_factorization',
        FEEDBACK_TYPE = 'implicit',
        USER_COL = 'visitorId',
        ITEM_COL = 'contentId',
        RATING_COL = 'rating',
        L2_REG = 30,
        NUM_FACTORS = 15)
    AS
    SELECT
      visitorId,
      contentId,
      0.3 * (1 + (session_duration - 57937) / 57937) AS rating
    FROM `bqml_tutorial.analytics_session_data`
    WHERE 0.3 * (1 + (session_duration - 57937) / 57937) < 1;

    L'exécution de la requête prend environ 10 minutes, puis le modèle mf_implicit s'affiche dans le volet Explorer. Étant donné que la requête utilise une instruction CREATE MODEL pour créer un modèle, les résultats de la requête ne sont pas affichés.

Obtenir des statistiques d'entraînement

Vous pouvez également afficher les statistiques d'entraînement du modèle dans la console Google Cloud.

Pour créer un modèle, un algorithme de machine learning crée de nombreuses itérations du modèle à l'aide de différents paramètres, puis sélectionne la version du modèle qui minimise la perte. Ce processus est appelé minimisation du risque empirique. Les statistiques d'entraînement du modèle vous permettent de voir la perte associée à chaque itération du modèle.

Pour afficher les statistiques d'entraînement du modèle, procédez comme suit:

  1. Dans la console Google Cloud, accédez à la page BigQuery.

    Accéder à BigQuery

  2. Dans le volet Explorer, développez votre projet, l'ensemble de données bqml_tutorial, puis le dossier Modèles.

  3. Cliquez sur le modèle mf_implicit, puis sur l'onglet Entraînement.

  4. Dans la section Afficher sous forme de, cliquez sur Table. Le résultat doit ressembler à ce qui suit :

    +-----------+--------------------+--------------------+
    | Iteration | Training Data Loss | Duration (seconds) |
    +-----------+--------------------+--------------------+
    |  5        | 0.0027             | 47.27              |
    +-----------+--------------------+--------------------+
    |  4        | 0.0028             | 39.60              |
    +-----------+--------------------+--------------------+
    |  3        | 0.0032             | 55.57              |
    +-----------+--------------------+--------------------+
    |  ...      | ...                | ...                |
    +-----------+--------------------+--------------------+
    

    La colonne Perte de données d'entraînement représente la métrique de perte calculée après entraînement du modèle. Comme il s'agit d'un modèle de factorisation matricielle, cette colonne affiche l'erreur quadratique moyenne.

Évaluer le modèle

Évaluez les performances du modèle à l'aide de la fonction ML.EVALUATE. La fonction ML.EVALUATE compare les notes de contenu prédites renvoyées par le modèle aux métriques d'évaluation calculées pendant l'entraînement.

Pour évaluer le modèle, procédez comme suit:

  1. Dans la console Google Cloud, accédez à la page BigQuery.

    Accéder à BigQuery

  2. Dans l'éditeur de requête, collez la requête suivante, puis cliquez sur Exécuter:

    SELECT
      *
    FROM
      ML.EVALUATE(MODEL `bqml_tutorial.mf_implicit`);

    Le résultat doit ressembler à ce qui suit :

    +------------------------+-----------------------+---------------------------------------+---------------------+
    | mean_average_precision |  mean_squared_error   | normalized_discounted_cumulative_gain |    average_rank     |
    +------------------------+-----------------------+---------------------------------------+---------------------+
    |     0.4434341257478137 | 0.0013381759837648962 |                    0.9433280547112802 | 0.24031636088594222 |
    +------------------------+-----------------------+---------------------------------------+---------------------+
    

    Pour en savoir plus sur la sortie de la fonction ML.EVALUATE, consultez la section Modèles de factorisation matricielle.

Obtenir les notes prévues pour un sous-ensemble de paires visiteur/contenu

Utilisez ML.RECOMMEND pour obtenir la classification prévue pour chaque contenu pour cinq visiteurs du site.

Pour obtenir des classifications prévues, procédez comme suit:

  1. Dans la console Google Cloud, accédez à la page BigQuery.

    Accéder à BigQuery

  2. Dans l'éditeur de requête, collez la requête suivante, puis cliquez sur Exécuter:

    SELECT
      *
    FROM
      ML.RECOMMEND(
        MODEL `bqml_tutorial.mf_implicit`,
        (
          SELECT
            visitorId
          FROM
            `bqml_tutorial.analytics_session_data`
          LIMIT 5
        ));

    Le résultat doit ressembler à ce qui suit :

    +-------------------------------+---------------------+-----------+
    | predicted_rating_confidence   | visitorId           | contentId |
    +-------------------------------+---------------------+-----------+
    | 0.0033608418060270262         | 7337153711992174438 | 277237933 |
    +-------------------------------+---------------------+-----------+
    | 0.003602395397293956          | 7337153711992174438 | 158246147 |
    +-------------------------------+---------------------+--  -------+
    | 0.0053197670652785356         | 7337153711992174438 | 299389988 |
    +-------------------------------+---------------------+-----------+
    | ...                           | ...                 | ...       |
    +-------------------------------+---------------------+-----------+
    

Générer des recommandations

Utilisez les notes prédites pour générer les cinq ID de contenu recommandés les mieux notés pour chaque ID de visiteur.

Pour générer des recommandations, procédez comme suit:

  1. Dans la console Google Cloud, accédez à la page BigQuery.

    Accéder à BigQuery

  2. Écrivez les notes prévues dans un tableau. Dans l'éditeur de requête, collez la requête suivante, puis cliquez sur Exécuter:

    CREATE OR REPLACE TABLE `bqml_tutorial.recommend_content`
    AS
    SELECT
      *
    FROM
      ML.RECOMMEND(MODEL `bqml_tutorial.mf_implicit`);
  3. Sélectionnez les cinq premiers résultats par visiteur. Dans l'éditeur de requête, collez la requête suivante, puis cliquez sur Exécuter:

    SELECT
      visitorId,
      ARRAY_AGG(
        STRUCT(contentId, predicted_rating_confidence)
        ORDER BY predicted_rating_confidence DESC
        LIMIT 5) AS rec
    FROM
      `bqml_tutorial.recommend_content`
    GROUP BY
      visitorId;

    Le résultat doit ressembler à ce qui suit :

    +---------------------+-----------------+---------------------------------+
    | visitorId           | rec:contentId   | rec:predicted_rating_confidence |
    +---------------------+-----------------+-------------------------  ------+
    | 867526255058981688  | 299804319       | 0.88170525357178664             |
    |                     | 299935287       | 0.54699439944935124             |
    |                     | 299410466       | 0.53424780863188659             |
    |                     | 299826767       | 0.46949603950374219             |
    |                     | 299809748       | 0.3379991197434149              |
    +---------------------+-----------------+---------------------------------+
    | 2434264018925667659 | 299824032       | 1.3903516407308065              |
    |                     | 299410466       | 0.9921995618196483              |
    |                     | 299903877       | 0.92333625294129218             |
    |                     | 299816215       | 0.91856701667757279             |
    |                     | 299852437       | 0.86973661454890561             |
    +---------------------+-----------------+---------------------------------+
    | ...                 | ...             | ...                             |
    +---------------------+-----------------+---------------------------------+
    

Effectuer un nettoyage

Pour éviter que les ressources utilisées lors de ce tutoriel soient facturées sur votre compte Google Cloud, supprimez le projet contenant les ressources, ou conservez le projet et supprimez les ressources individuelles.

  • Supprimez le projet que vous avez créé.
  • Ou conservez le projet et supprimez l'ensemble de données.

Supprimer l'ensemble de données

Si vous supprimez votre projet, tous les ensembles de données et toutes les tables qui lui sont associés sont également supprimés. Si vous préférez réutiliser le projet, vous pouvez supprimer l'ensemble de données que vous avez créé dans ce tutoriel :

  1. Si nécessaire, ouvrez la page BigQuery dans Cloud Console.

    Accéder à BigQuery

  2. Dans le panneau de navigation, cliquez sur l'ensemble de données bqml_tutorial que vous avez créé.

  3. Cliquez sur Delete dataset (Supprimer l'ensemble de données) dans la partie droite de la fenêtre. Cette action supprime l'ensemble de données, la table et toutes les données.

  4. Dans la boîte de dialogue Supprimer l'ensemble de données, confirmez la commande de suppression en saisissant le nom de votre ensemble de données (bqml_tutorial), puis cliquez sur Supprimer.

Supprimer votre projet

Pour supprimer le projet :

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.

Étape suivante