Membuat rekomendasi berdasarkan masukan eksplisit dengan model faktorisasi matriks


Tutorial ini mengajarkan cara membuat model faktorisasi matriks dan melatihnya pada rating film pelanggan dalam set data movielens1m. Kemudian, Anda akan menggunakan model faktorisasi matriks untuk menghasilkan rekomendasi film bagi pengguna.

Menggunakan rating yang diberikan pelanggan untuk melatih model disebut pelatihan dengan masukan eksplisit. Model faktorisasi matriks dilatih menggunakan algoritma Alternating Least Squares saat Anda menggunakan masukan eksplisit sebagai data pelatihan.

Tujuan

Tutorial ini memandu Anda menyelesaikan tugas-tugas berikut:

  • Membuat model faktorisasi matriks menggunakan pernyataan CREATE MODEL.
  • Mengevaluasi model menggunakan fungsi ML.EVALUATE.
  • Membuat rekomendasi film untuk pengguna menggunakan model dengan fungsi ML.RECOMMEND.

Biaya

Tutorial ini menggunakan komponen Google Cloud yang dapat dikenai biaya, termasuk:

  • BigQuery
  • BigQuery ML

Untuk informasi selengkapnya tentang biaya BigQuery, lihat halaman harga BigQuery.

Untuk informasi selengkapnya tentang biaya BigQuery ML, lihat harga BigQuery ML.

Sebelum memulai

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  5. Make sure that billing is enabled for your Google Cloud project.

  6. BigQuery secara otomatis diaktifkan dalam project baru. Untuk mengaktifkan BigQuery dalam project yang sudah ada, buka

    Enable the BigQuery API.

    Enable the API

Izin yang Diperlukan

  • Untuk membuat set data, Anda memerlukan izin IAM bigquery.datasets.create.
  • Untuk membuat resource koneksi, Anda memerlukan izin berikut:

    • bigquery.connections.create
    • bigquery.connections.get
  • Untuk membuat model, Anda memerlukan izin berikut:

    • bigquery.jobs.create
    • bigquery.models.create
    • bigquery.models.getData
    • bigquery.models.updateData
    • bigquery.connections.delegate
  • Untuk menjalankan inferensi, Anda memerlukan izin berikut:

    • bigquery.models.getData
    • bigquery.jobs.create

Untuk mengetahui informasi lebih lanjut tentang peran dan izin IAM di BigQuery, baca Pengantar IAM.

Membuat set data

Buat set data BigQuery untuk menyimpan model ML Anda:

  1. Di konsol Google Cloud, buka halaman BigQuery.

    Buka halaman BigQuery

  2. Di panel Explorer, klik nama project Anda.

  3. Klik View actions > Create dataset.

    Buat set data.

  4. Di halaman Create dataset, lakukan hal berikut:

    • Untuk Dataset ID, masukkan bqml_tutorial.

    • Untuk Location type, pilih Multi-region, lalu pilih US (multiple regions in United States).

      Set data publik disimpan di US multi-region. Untuk mempermudah, simpan set data Anda di lokasi yang sama.

    • Jangan ubah setelan default yang tersisa, lalu klik Create dataset.

      Halaman Create dataset.

Mengupload data Movielens

Upload data movielens1m ke BigQuery menggunakan alat command line bq.

Ikuti langkah-langkah berikut untuk mengupload data movielens1m:

  1. Buka Cloud Shell:

    Aktifkan Cloud Shell

  2. Upload data rating ke tabel ratings. Di command line, tempelkan kueri berikut, lalu tekan Enter:

    curl -O 'http://files.grouplens.org/datasets/movielens/ml-1m.zip'
    unzip ml-1m.zip
    sed 's/::/,/g' ml-1m/ratings.dat > ratings.csv
    bq load --source_format=CSV bqml_tutorial.ratings ratings.csv \
      user_id:INT64,item_id:INT64,rating:FLOAT64,timestamp:TIMESTAMP
    
  3. Upload data film ke tabel movies. Di command line, tempel kueri berikut dan tekan Enter:

    sed 's/::/@/g' ml-1m/movies.dat > movie_titles.csv
    bq load --source_format=CSV --field_delimiter=@ \
    bqml_tutorial.movies movie_titles.csv \
    movie_id:INT64,movie_title:STRING,genre:STRING
    

Membuat model

Buat model faktorisasi matriks dan latih dengan data dalam tabel ratings. Model dilatih untuk memprediksi rating untuk setiap pasangan item pengguna, berdasarkan rating film yang diberikan pelanggan.

Pernyataan CREATE MODEL berikut menggunakan kolom ini untuk membuat rekomendasi:

  • user_id—ID pengguna.
  • item_id—ID film.
  • rating—Rating eksplisit dari 1 hingga 5 yang diberikan pengguna kepada item.

Ikuti langkah-langkah berikut untuk membuat model:

  1. Di Konsol Google Cloud, buka halaman BigQuery.

    Buka BigQuery

  2. Di editor kueri, tempel kueri berikut dan klik Jalankan:

    CREATE OR REPLACE MODEL `bqml_tutorial.mf_explicit`
      OPTIONS (
        MODEL_TYPE = 'matrix_factorization',
        FEEDBACK_TYPE = 'explicit',
        USER_COL = 'user_id',
        ITEM_COL = 'item_id',
        L2_REG = 9.83,
        NUM_FACTORS = 34)
    AS
    SELECT
      user_id,
      item_id,
      rating
    FROM `bqml_tutorial.ratings`;

    Pemrosesan kueri ini memerlukan waktu sekitar 10 menit, setelah itu model mf_explicit akan muncul di panel Explorer. Karena kueri tersebut menggunakan pernyataan CREATE MODEL untuk membuat model, Anda tidak akan melihat hasil kueri.

Mendapatkan statistik pelatihan

Atau, Anda dapat melihat statistik pelatihan model di konsol Google Cloud.

Algoritma machine learning membuat model dengan membuat banyak iterasi model menggunakan parameter yang berbeda, lalu memilih versi model yang meminimalkan kerugian. Proses ini disebut minimalisasi risiko empiris. Statistik pelatihan model memungkinkan Anda melihat kerugian yang terkait dengan setiap iterasi model.

Ikuti langkah-langkah berikut untuk melihat statistik pelatihan model:

  1. Di Konsol Google Cloud, buka halaman BigQuery.

    Buka BigQuery

  2. Di panel Explorer, luaskan project Anda, luaskan set data bqml_tutorial, lalu luaskan folder Models.

  3. Klik model mf_explicit, lalu klik tab Pelatihan

  4. Di bagian Lihat sebagai, klik Tabel. Hasilnya akan terlihat seperti berikut:

    +-----------+--------------------+--------------------+
    | Iteration | Training Data Loss | Duration (seconds) |
    +-----------+--------------------+--------------------+
    |  11       | 0.3943             | 42.59              |
    +-----------+--------------------+--------------------+
    |  10       | 0.3979             | 27.37              |
    +-----------+--------------------+--------------------+
    |   9       | 0.4038             | 40.79              |
    +-----------+--------------------+--------------------+
    |  ...      | ...                | ...                |
    +-----------+--------------------+--------------------+
    

    Kolom Training Data Loss menunjukkan metrik kerugian yang dihitung setelah model dilatih. Karena ini adalah model faktorisasi matriks, kolom ini menampilkan rataan kuadrat galat (RKG).

Anda juga dapat menggunakan fungsi ML.TRAINING_INFO untuk melihat statistik pelatihan model.

Mengevaluasi model

Evaluasi performa model menggunakan fungsi ML.EVALUATE. Fungsi ML.EVALUATE mengevaluasi prediksi rating film yang ditampilkan oleh model terhadap rating film pengguna yang sebenarnya dari data pelatihan.

Ikuti langkah-langkah berikut untuk mengevaluasi model:

  1. Di Konsol Google Cloud, buka halaman BigQuery.

    Buka BigQuery

  2. Di editor kueri, tempel kueri berikut dan klik Jalankan:

    SELECT
      *
    FROM
      ML.EVALUATE(
        MODEL `bqml_tutorial.mf_explicit`,
        (
          SELECT
            user_id,
            item_id,
            rating
          FROM
            `bqml_tutorial.ratings`
        ));

    Hasilnya akan terlihat seperti berikut:

    +---------------------+---------------------+------------------------+-----------------------+--------------------+--------------------+
    | mean_absolute_error | mean_squared_error  | mean_squared_log_error | median_absolute_error |      r2_score      | explained_variance |
    +---------------------+---------------------+------------------------+-----------------------+--------------------+--------------------+
    | 0.48494444327829156 | 0.39433706592870565 |   0.025437895793637522 |   0.39017059802629905 | 0.6840033369412044 | 0.6840033369412264 |
    +---------------------+---------------------+------------------------+-----------------------+--------------------+--------------------+
    

    Metrik penting dalam hasil evaluasi adalah skor 2. Skor R2 adalah ukuran statistik yang menentukan apakah prediksi regresi linear memperkirakan data sebenarnya. Nilai 0 menunjukkan bahwa model tidak menjelaskan variabilitas data respons di sekitar nilai rata-rata. Nilai 1 menunjukkan bahwa model menjelaskan semua variabilitas data respons di sekitar nilai rata-rata.

    Untuk mengetahui informasi selengkapnya tentang output fungsi ML.EVALUATE, lihat Model faktorisasi matriks.

Anda juga dapat memanggil ML.EVALUATE tanpa memberikan data input. Pelatihan ini akan menggunakan metrik evaluasi yang dihitung selama pelatihan.

Mendapatkan prediksi rating untuk subkumpulan pasangan item pengguna

Gunakan ML.RECOMMEND untuk mendapatkan prediksi rating untuk setiap film bagi lima pengguna.

Ikuti langkah-langkah berikut untuk mendapatkan prediksi rating:

  1. Di Konsol Google Cloud, buka halaman BigQuery.

    Buka BigQuery

  2. Di editor kueri, tempel kueri berikut dan klik Jalankan:

    SELECT
      *
    FROM
      ML.RECOMMEND(
        MODEL `bqml_tutorial.mf_explicit`,
        (
          SELECT
            user_id
          FROM
            `bqml_tutorial.ratings`
          LIMIT 5
        ));

    Hasilnya akan terlihat seperti berikut:

    +--------------------+---------+---------+
    | predicted_rating   | user_id | item_id |
    +--------------------+---------+---------+
    | 4.2125303962491873 | 4       | 3169    |
    +--------------------+---------+---------+
    | 4.8068920531981263 | 4       | 3739    |
    +--------------------+---------+---------+
    | 3.8742203494732403 | 4       | 3574    |
    +--------------------+---------+---------+
    | ...                | ...     | ...     |
    +--------------------+---------+---------+
    

Membuat rekomendasi

Gunakan prediksi rating untuk membuat lima film teratas yang direkomendasikan untuk setiap pengguna.

Ikuti langkah-langkah berikut untuk membuat rekomendasi:

  1. Di Konsol Google Cloud, buka halaman BigQuery.

    Buka BigQuery

  2. Tulis prediksi rating ke tabel. Di editor kueri, tempel kueri berikut, lalu klik Jalankan:

    CREATE OR REPLACE TABLE `bqml_tutorial.recommend`
    AS
    SELECT
      *
    FROM
      ML.RECOMMEND(MODEL `bqml_tutorial.mf_explicit`);
  3. Gabungkan prediksi rating dengan informasi film, dan pilih lima hasil teratas per pengguna. Di editor kueri, tempel kueri berikut, lalu klik Run:

    SELECT
      user_id,
      ARRAY_AGG(STRUCT(movie_title, genre, predicted_rating) ORDER BY predicted_rating DESC LIMIT 5)
    FROM
      (
        SELECT
          user_id,
          item_id,
          predicted_rating,
          movie_title,
          genre
        FROM
          `bqml_tutorial.recommend`
        JOIN
          `bqml_tutorial.movies`
          ON
            item_id = movie_id
      )
    GROUP BY
      user_id;

    Hasilnya akan terlihat seperti berikut:

    +---------+-------------------------------------+------------------------+--------------------+
    | user_id | f0_movie_title                      | f0_genre               | predicted_rating   |
    +---------+-------------------------------------+------------------------+--------------------+
    | 4597    | Song of Freedom (1936)              | Drama                  | 6.8495752907364009 |
    |         | I Went Down (1997)                  | Action/Comedy/Crime    | 6.7203235758772877 |
    |         | Men With Guns (1997)                | Action/Drama           | 6.399407352232001  |
    |         | Kid, The (1921)                     | Action                 | 6.1952890198126731 |
    |         | Hype! (1996)                        | Documentary            | 6.1895766097451475 |
    +---------+-------------------------------------+------------------------+--------------------+
    | 5349    | Fandango (1985)                     | Comedy                 | 9.944574012151549  |
    |         | Breakfast of Champions (1999)       | Comedy                 | 9.55661860430112   |
    |         | Funny Bones (1995)                  | Comedy                 | 9.52778917835076   |
    |         | Paradise Road (1997)                | Drama/War              | 9.1643621767929133 |
    |         | Surviving Picasso (1996)            | Drama                  | 8.807353289233772  |
    +---------+-------------------------------------+------------------------+--------------------+
    | ...     | ...                                 | ...                    | ...                |
    +---------+-------------------------------------+------------------------+--------------------+
    

Pembersihan

Agar akun Google Cloud Anda tidak dikenai biaya untuk resource yang digunakan dalam tutorial ini, hapus project yang berisi resource tersebut, atau simpan project dan hapus resource satu per satu.

  • Anda dapat menghapus project yang dibuat.
  • Atau, Anda dapat menyimpan project dan menghapus set data.

Menghapus set data

Jika project Anda dihapus, semua set data dan semua tabel dalam project akan dihapus. Jika ingin menggunakan project tersebut lagi, Anda dapat menghapus set data yang Anda buat dalam tutorial ini:

  1. Jika perlu, buka halaman BigQuery di konsol Google Cloud.

    Buka halaman BigQuery

  2. Di navigasi, klik set data bqml_tutorial yang telah Anda buat.

  3. Klik Delete dataset di sisi kanan jendela. Tindakan ini akan menghapus set data, tabel, dan semua data.

  4. Pada dialog Hapus set data, konfirmasi perintah hapus dengan mengetikkan nama set data Anda (bqml_tutorial), lalu klik Hapus.

Menghapus project Anda

Untuk menghapus project:

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.

Langkah selanjutnya