Anula la implementación de tu modelo

Organiza tus páginas con colecciones Guarda y categoriza el contenido según tus preferencias.

Después de implementar y hacer predicciones, puedes anular de forma manual la implementación de tu modelo para evitar que se sigan generando cargos.

Anula la implementación de muestras de código

IU web

  1. Abre Vision Dashboard y selecciona la pestaña Modelos (con el ícono de bombilla) en la barra de navegación izquierda para ver los modelos disponibles.

    Para ver los modelos de un proyecto diferente, selecciona el proyecto de la lista desplegable en la parte superior derecha de la barra de título.

  2. Selecciona la fila del modelo que deseas usar para etiquetar las imágenes.
  3. Selecciona la pestaña Probar y usar, que se encuentra justo debajo de la barra de título.
  4. Selecciona Remove deployment (Quitar implementación) en el cuadro que se encuentra debajo del nombre del modelo para abrir la ventana de la opción de anulación de la implementación.

    Menú emergente para anular la implementación
  5. Selecciona Quitar implementación (Remove deployment) para anular la implementación del modelo.

    Implementación del modelo Implementación del modelo
  6. Recibirás un correo electrónico cuando se complete la anulación de la implementación del modelo.

REST

Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:

  • project-id: El ID del proyecto de GCP.
  • model-id: Es el ID del modelo, que se muestra en la respuesta que recibiste cuando lo creaste. El ID es el último elemento del nombre del modelo. Por ejemplo:
    • Nombre del modelo: projects/project-id/locations/location-id/models/IOD4412217016962778756
    • ID del modelo: IOD4412217016962778756

Método HTTP y URL:

POST https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id:undeploy

Para enviar tu solicitud, elige una de estas opciones:

curl

Ejecuta el siguiente comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: project-id" \
-H "Content-Type: application/json; charset=utf-8" \
-d "" \
"https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id:undeploy"

PowerShell

Ejecuta el siguiente comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "project-id" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id:undeploy" | Select-Object -Expand Content
Deberías recibir una respuesta con el ID de la operación de implementación, como la que se muestra a continuación:
{
  "name": "projects/project-id/locations/us-central1/operations/operation-id",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2019-08-07T22:19:50.828033Z",
    "updateTime": "2019-08-07T22:19:50.828033Z",
    "undeployModelDetails": {}
  }
}

Puedes obtener el estado de una operación con el siguiente método HTTP y URL:

GET https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/operations/operation-id

El estado de una operación finalizada será similar al siguiente:

{
  "name": "projects/project-id/locations/us-central1/operations/operation-id",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2019-06-21T16:47:21.704674Z",
    "updateTime": "2019-06-21T17:01:00.802505Z",
    "deployModelDetails": {}
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.protobuf.Empty"
  }
}

Go

Antes de probar esta muestra, sigue las instrucciones de configuración para este lenguaje en la página Bibliotecas cliente.

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	"cloud.google.com/go/automl/apiv1/automlpb"
)

// undeployModel deploys a model.
func undeployModel(w io.Writer, projectID string, location string, modelID string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// modelID := "TRL123456789..."

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	req := &automlpb.UndeployModelRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/models/%s", projectID, location, modelID),
	}

	op, err := client.UndeployModel(ctx, req)
	if err != nil {
		return fmt.Errorf("DeployModel: %v", err)
	}
	fmt.Fprintf(w, "Processing operation name: %q\n", op.Name())

	if err := op.Wait(ctx); err != nil {
		return fmt.Errorf("Wait: %v", err)
	}

	fmt.Fprintf(w, "Model undeployed.\n")

	return nil
}

Java

Antes de probar esta muestra, sigue las instrucciones de configuración para este lenguaje en la página Bibliotecas cliente.

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.ModelName;
import com.google.cloud.automl.v1.OperationMetadata;
import com.google.cloud.automl.v1.UndeployModelRequest;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class UndeployModel {

  static void undeployModel() throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    undeployModel(projectId, modelId);
  }

  // Undeploy a model from prediction
  static void undeployModel(String projectId, String modelId)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);
      UndeployModelRequest request =
          UndeployModelRequest.newBuilder().setName(modelFullId.toString()).build();
      OperationFuture<Empty, OperationMetadata> future = client.undeployModelAsync(request);

      future.get();
      System.out.println("Model undeployment finished");
    }
  }
}

Node.js

Antes de probar esta muestra, sigue las instrucciones de configuración para este lenguaje en la página Bibliotecas cliente.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function undeployModel() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
  };

  const [operation] = await client.undeployModel(request);

  // Wait for operation to complete.
  const [response] = await operation.promise();
  console.log(`Model undeployment finished. ${response}`);
}

undeployModel();

Python

Antes de probar esta muestra, sigue las instrucciones de configuración para este lenguaje en la página Bibliotecas cliente.

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)
response = client.undeploy_model(name=model_full_id)

print("Model undeployment finished. {}".format(response.result()))

Idiomas adicionales

C#: sigue las instrucciones de configuración de C# en la página Bibliotecas cliente y, luego, visita la documentación de referencia de AutoML Vision para .NET.

PHP: sigue las instrucciones de configuración de PHP en la página Bibliotecas cliente y, luego, visita la documentación de referencia de AutoML Vision para PHP.

Ruby: sigue las instrucciones de configuración de Ruby en la página Bibliotecas cliente y, luego, visita la documentación de referencia de AutoML Vision para Ruby.