モデルの管理

準備したデータセットを使用してモデルをトレーニングし、カスタムモデルを作成します。 データセット AutoML Vision はデータセットの項目を使用してモデルをトレーニング、テストし、モデルのパフォーマンスを評価します。その結果を確認し、必要に応じてトレーニング データセットを調整して、改善されたデータセットで新しいモデルをトレーニングします。

モデルのトレーニングが完了するまでに数時間かかることがあります。AutoML API を使用すると、トレーニングのステータスを確認できます。

AutoML Vision ではトレーニングを開始するたびに新しいモデルが作成されるため、プロジェクトに多数のモデルが含まれる場合があります。プロジェクト内のモデルの一覧を取得し、不要になったモデルを削除することが可能です。

モデルの一覧表示

このセクションでは、プロジェクトで使用できるモデルを一覧表示する方法を説明します。

ウェブ UI

Vision Dashboard を使用して使用可能なモデルを一覧表示するには、左側のナビゲーション バーにある電球アイコンをクリックします。

モデルの一覧

別のプロジェクトのモデルを表示するには、タイトルバーの右上にあるプルダウン リストからプロジェクトを選択します。

REST とコマンドライン

後述のリクエストのデータを使用する前に、次のように置き換えます。

  • project-id: GCP プロジェクト ID

HTTP メソッドと URL:

GET https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models

リクエストを送信するには、次のいずれかのオプションを選択します。

curl

次のコマンドを実行します。

curl -X GET \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models

PowerShell

次のコマンドを実行します。

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models" | Select-Object -Expand Content

次の例のような JSON レスポンスが返されます。このレスポンスには、クラウドでホストされる 2 つのモデルに関する情報が示されます。



    {
  "model": [
    {
      "name": "projects/project-id/locations/us-central1/models/model-id-1",
      "displayName": "display-name-1",
      "datasetId": "dataset-id",
      "createTime": "2019-10-30T20:06:08.253243Z",
      "deploymentState": "UNDEPLOYED",
      "updateTime": "2019-10-30T20:54:50.472328Z",
      "imageClassificationModelMetadata": {
        "trainBudget": "1",
        "modelType": "mobile-low-latency-1",
        "nodeQps": 3.2
      }
    },
    {
      "name": "projects/project-id/locations/us-central1/models/model-id-2",
      "displayName": "display-name-2",
      "datasetId": "dataset-id",
      "createTime": "2019-10-29T19:06:38.048492Z",
      "deploymentState": "UNDEPLOYED",
      "updateTime": "2019-10-29T19:35:19.104716Z",
      "imageClassificationModelMetadata": {
        "trainBudget": "1",
        "modelType": "cloud",
        "nodeQps": 3.2
      }
    }
  ]
}

Go

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	"google.golang.org/api/iterator"
	automlpb "google.golang.org/genproto/googleapis/cloud/automl/v1"
)

// listModels lists existing models.
func listModels(w io.Writer, projectID string, location string) error {
	// projectID := "my-project-id"
	// location := "us-central1"

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	req := &automlpb.ListModelsRequest{
		Parent: fmt.Sprintf("projects/%s/locations/%s", projectID, location),
	}

	it := client.ListModels(ctx, req)

	// Iterate over all results
	for {
		model, err := it.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return fmt.Errorf("ListModels.Next: %v", err)
		}

		// Retrieve deployment state.
		deploymentState := "undeployed"
		if model.GetDeploymentState() == automlpb.Model_DEPLOYED {
			deploymentState = "deployed"
		}

		// Display the model information.
		fmt.Fprintf(w, "Model name: %v\n", model.GetName())
		fmt.Fprintf(w, "Model display name: %v\n", model.GetDisplayName())
		fmt.Fprintf(w, "Model create time:\n")
		fmt.Fprintf(w, "\tseconds: %v\n", model.GetCreateTime().GetSeconds())
		fmt.Fprintf(w, "\tnanos: %v\n", model.GetCreateTime().GetNanos())
		fmt.Fprintf(w, "Model deployment state: %v\n", deploymentState)
	}

	return nil
}

Java

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.AutoMlSettings;
import com.google.cloud.automl.v1.ListModelsRequest;
import com.google.cloud.automl.v1.LocationName;
import com.google.cloud.automl.v1.Model;
import com.google.protobuf.Timestamp;
import java.io.IOException;
import org.threeten.bp.Duration;

class ListModels {

  static void listModels() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    listModels(projectId);
  }

  // List the models available in the specified location
  static void listModels(String projectId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    AutoMlSettings.Builder autoMlSettingsBuilder = AutoMlSettings.newBuilder();

    autoMlSettingsBuilder
        .listModelsSettings()
        .setRetrySettings(
            autoMlSettingsBuilder
                .listModelsSettings()
                .getRetrySettings()
                .toBuilder()
                .setTotalTimeout(Duration.ofSeconds(30))
                .build());
    AutoMlSettings autoMlSettings = autoMlSettingsBuilder.build();

    try (AutoMlClient client = AutoMlClient.create(autoMlSettings)) {
      // A resource that represents Google Cloud Platform location.
      LocationName projectLocation = LocationName.of(projectId, "us-central1");

      // Create list models request.
      ListModelsRequest listModlesRequest =
          ListModelsRequest.newBuilder()
              .setParent(projectLocation.toString())
              .setFilter("")
              .build();

      // List all the models available in the region by applying filter.
      System.out.println("List of models:");
      for (Model model : client.listModels(listModlesRequest).iterateAll()) {
        // Display the model information.
        System.out.format("Model name: %s%n", model.getName());
        // To get the model id, you have to parse it out of the `name` field. As models Ids are
        // required for other methods.
        // Name Format: `projects/{project_id}/locations/{location_id}/models/{model_id}`
        String[] names = model.getName().split("/");
        String retrievedModelId = names[names.length - 1];
        System.out.format("Model id: %s%n", retrievedModelId);
        System.out.format("Model display name: %s%n", model.getDisplayName());
        System.out.println("Model create time:");
        Timestamp createdTime = model.getCreateTime();
        System.out.format("\tseconds: %s%n", createdTime.getSeconds());
        System.out.format("\tnanos: %s%n", createdTime.getNanos());
        System.out.format("Model deployment state: %s%n", model.getDeploymentState());
      }
    }
  }
}

Node.js

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function listModels() {
  // Construct request
  const request = {
    parent: client.locationPath(projectId, location),
    filter: 'translation_model_metadata:*',
  };

  const [response] = await client.listModels(request);

  console.log('List of models:');
  for (const model of response) {
    console.log(`Model name: ${model.name}`);
    console.log(`
      Model id: ${model.name.split('/')[model.name.split('/').length - 1]}`);
    console.log(`Model display name: ${model.displayName}`);
    console.log('Model create time');
    console.log(`\tseconds ${model.createTime.seconds}`);
    console.log(`\tnanos ${model.createTime.nanos / 1e9}`);
    console.log(`Model deployment state: ${model.deploymentState}`);
  }
}

listModels();

PHP

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

use Google\Cloud\AutoMl\V1\AutoMlClient;
use Google\Cloud\AutoMl\V1\Model\DeploymentState;

/** Uncomment and populate these variables in your code */
// $projectId = '[Google Cloud Project ID]';
// $location = 'us-central1';

$client = new AutoMlClient();

try {
    // resource that represents Google Cloud Platform location
    $formattedParent = $client->locationName(
        $projectId,
        $location
    );

    $pagedResponse = $client->listModels($formattedParent);

    print('List of models' . PHP_EOL);
    foreach ($pagedResponse->iteratePages() as $page) {
        foreach ($page as $model) {
            // retrieve deployment state
            if ($model->getDeploymentState() == DeploymentState::DEPLOYED) {
                $deployment_state = 'deployed';
            } else {
                $deployment_state = 'undeployed';
            }

            // display model information
            $splitName = explode('/', $model->getName());
            printf('Model name: %s' . PHP_EOL, $model->getName());
            printf('Model id: %s' . PHP_EOL, end($splitName));
            printf('Model display name: %s' . PHP_EOL, $model->getDisplayName());
            printf('Model create time' . PHP_EOL);
            printf('seconds: %d' . PHP_EOL, $model->getCreateTime()->getSeconds());
            printf('nanos : %d' . PHP_EOL, $model->getCreateTime()->getNanos());
            printf('Model deployment state: %s' . PHP_EOL, $deployment_state);
        }
    }
} finally {
    $client->close();
}

Python

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"

client = automl.AutoMlClient()
# A resource that represents Google Cloud Platform location.
project_location = client.location_path(project_id, "us-central1")
response = client.list_models(project_location, "")

print("List of models:")
for model in response:
    # Display the model information.
    if (
        model.deployment_state
        == automl.enums.Model.DeploymentState.DEPLOYED
    ):
        deployment_state = "deployed"
    else:
        deployment_state = "undeployed"

    print("Model name: {}".format(model.name))
    print("Model id: {}".format(model.name.split("/")[-1]))
    print("Model display name: {}".format(model.display_name))
    print("Model create time:")
    print("\tseconds: {}".format(model.create_time.seconds))
    print("\tnanos: {}".format(model.create_time.nanos))
    print("Model deployment state: {}".format(deployment_state))

Ruby

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

require "google/cloud/automl"

project_id = "YOUR_PROJECT_ID"

client = Google::Cloud::AutoML.auto_ml
# A resource that represents Google Cloud Platform location.
project_location = client.location_path project: project_id,
                                        location: "us-central1"
models = client.list_models parent: project_location

puts "List of models:"

models.each do |model|
  # Display the model information.
  deployment_state = if model.deployment_state == :DEPLOYED
                       "deployed"
                     else
                       "undeployed"
                     end

  puts "Model name: #{model.name}"
  puts "Model id: #{model.name.split('/').last}"
  puts "Model display name: #{model.display_name}"
  puts "Model create time: #{model.create_time.to_time}"
  puts "Model deployment state: #{deployment_state}"
end

モデルに関する情報の取得

特定のトレーニング済みモデルを取得して、変更や予測ができます。

このセクションの例では、モデルに関する基本のメタデータが返されます。モデルの正確性と準備状況の詳細を確認するには、モデルの評価をご覧ください。

REST とコマンドライン

トレーニングが完了したら、新しく作成したモデルに関する情報を取得できます。

REST とコマンドライン

後述のリクエストのデータを使用する前に、次のように置き換えます。

  • project-id: GCP プロジェクト ID
  • model-id: モデルを作成したときにレスポンスで返されたモデルの ID。この ID は、モデルの名前の最後の要素です。例:
    • モデル名: projects/project-id/locations/location-id/models/IOD4412217016962778756
    • モデル ID: IOD4412217016962778756

HTTP メソッドと URL:

GET https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id

リクエストを送信するには、次のいずれかのオプションを選択します。

curl

次のコマンドを実行します。

curl -X GET \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id

PowerShell

次のコマンドを実行します。

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id" | Select-Object -Expand Content

次のような JSON レスポンスが返されます。



    {
  "name": "projects/project-id/locations/us-central1/models/model-id",
  "displayName": "display-name",
  "datasetId": "dataset-id",
  "createTime": "2019-10-29T19:06:38.048492Z",
  "deploymentState": "UNDEPLOYED",
  "updateTime": "2019-10-29T19:35:19.104716Z",
  "imageClassificationModelMetadata": {
    "trainBudget": "1",
    "modelType": "cloud",
    "nodeQps": 3.2
  }
}

Go

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	automlpb "google.golang.org/genproto/googleapis/cloud/automl/v1"
)

// getModel gets a model.
func getModel(w io.Writer, projectID string, location string, modelID string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// modelID := "TRL123456789..."

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	req := &automlpb.GetModelRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/models/%s", projectID, location, modelID),
	}

	model, err := client.GetModel(ctx, req)
	if err != nil {
		return fmt.Errorf("GetModel: %v", err)
	}

	// Retrieve deployment state.
	deploymentState := "undeployed"
	if model.GetDeploymentState() == automlpb.Model_DEPLOYED {
		deploymentState = "deployed"
	}

	// Display the model information.
	fmt.Fprintf(w, "Model name: %v\n", model.GetName())
	fmt.Fprintf(w, "Model display name: %v\n", model.GetDisplayName())
	fmt.Fprintf(w, "Model create time:\n")
	fmt.Fprintf(w, "\tseconds: %v\n", model.GetCreateTime().GetSeconds())
	fmt.Fprintf(w, "\tnanos: %v\n", model.GetCreateTime().GetNanos())
	fmt.Fprintf(w, "Model deployment state: %v\n", deploymentState)

	return nil
}

Java

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.Model;
import com.google.cloud.automl.v1.ModelName;
import com.google.protobuf.Timestamp;
import java.io.IOException;

class GetModel {

  static void getModel() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    getModel(projectId, modelId);
  }

  // Get a model
  static void getModel(String projectId, String modelId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);
      Model model = client.getModel(modelFullId);

      // Display the model information.
      System.out.format("Model name: %s%n", model.getName());
      // To get the model id, you have to parse it out of the `name` field. As models Ids are
      // required for other methods.
      // Name Format: `projects/{project_id}/locations/{location_id}/models/{model_id}`
      String[] names = model.getName().split("/");
      String retrievedModelId = names[names.length - 1];
      System.out.format("Model id: %s%n", retrievedModelId);
      System.out.format("Model display name: %s%n", model.getDisplayName());
      System.out.println("Model create time:");
      Timestamp createdTime = model.getCreateTime();
      System.out.format("\tseconds: %s%n", createdTime.getSeconds());
      System.out.format("\tnanos: %s%n", createdTime.getNanos());
      System.out.format("Model deployment state: %s%n", model.getDeploymentState());
    }
  }
}

Node.js

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function getModel() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
  };

  const [response] = await client.getModel(request);

  console.log(`Model name: ${response.name}`);
  console.log(
    `Model id: ${
      response.name.split('/')[response.name.split('/').length - 1]
    }`
  );
  console.log(`Model display name: ${response.displayName}`);
  console.log('Model create time');
  console.log(`\tseconds ${response.createTime.seconds}`);
  console.log(`\tnanos ${response.createTime.nanos / 1e9}`);
  console.log(`Model deployment state: ${response.deploymentState}`);
}

getModel();

PHP

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

use Google\Cloud\AutoMl\V1\AutoMlClient;
use Google\Cloud\AutoMl\V1\Model\DeploymentState;

/** Uncomment and populate these variables in your code */
// $projectId = '[Google Cloud Project ID]';
// $location = 'us-central1';
// $modelId = 'my_model_id_123';

$client = new AutoMlClient();

try {
    // get full path of model
    $formattedName = $client->modelName(
        $projectId,
        $location,
        $modelId
    );

    $model = $client->getModel($formattedName);

    // retrieve deployment state
    if ($model->getDeploymentState() == DeploymentState::DEPLOYED) {
        $deployment_state = 'deployed';
    } else {
        $deployment_state = 'undeployed';
    }

    // display model information
    $splitName = explode('/', $model->getName());
    printf('Model name: %s' . PHP_EOL, $model->getName());
    printf('Model id: %s' . PHP_EOL, end($splitName));
    printf('Model display name: %s' . PHP_EOL, $model->getDisplayName());
    printf('Model create time' . PHP_EOL);
    printf('seconds: %d' . PHP_EOL, $model->getCreateTime()->getSeconds());
    printf('nanos : %d' . PHP_EOL, $model->getCreateTime()->getNanos());
    printf('Model deployment state: %s' . PHP_EOL, $deployment_state);
} finally {
    $client->close();
}

Python

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)
model = client.get_model(model_full_id)

# Retrieve deployment state.
if model.deployment_state == automl.enums.Model.DeploymentState.DEPLOYED:
    deployment_state = "deployed"
else:
    deployment_state = "undeployed"

# Display the model information.
print("Model name: {}".format(model.name))
print("Model id: {}".format(model.name.split("/")[-1]))
print("Model display name: {}".format(model.display_name))
print("Model create time:")
print("\tseconds: {}".format(model.create_time.seconds))
print("\tnanos: {}".format(model.create_time.nanos))
print("Model deployment state: {}".format(deployment_state))

Ruby

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

require "google/cloud/automl"

project_id = "YOUR_PROJECT_ID"
model_id = "YOUR_MODEL_ID"

client = Google::Cloud::AutoML.auto_ml

# Get the full path of the model.
model_full_id = client.model_path project: project_id,
                                  location: "us-central1",
                                  model: model_id

model = client.get_model name: model_full_id

# Retrieve deployment state.
deployment_state = if model.deployment_state == :DEPLOYED
                     "deployed"
                   else
                     "undeployed"
                   end

# Display the model information.
puts "Model name: #{model.name}"
puts "Model id: #{model.name.split('/').last}"
puts "Model display name: #{model.display_name}"
puts "Model create time: #{model.create_time.to_time}"
puts "Model deployment state: #{deployment_state}"

Go

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	automlpb "google.golang.org/genproto/googleapis/cloud/automl/v1"
)

// getModel gets a model.
func getModel(w io.Writer, projectID string, location string, modelID string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// modelID := "TRL123456789..."

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	req := &automlpb.GetModelRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/models/%s", projectID, location, modelID),
	}

	model, err := client.GetModel(ctx, req)
	if err != nil {
		return fmt.Errorf("GetModel: %v", err)
	}

	// Retrieve deployment state.
	deploymentState := "undeployed"
	if model.GetDeploymentState() == automlpb.Model_DEPLOYED {
		deploymentState = "deployed"
	}

	// Display the model information.
	fmt.Fprintf(w, "Model name: %v\n", model.GetName())
	fmt.Fprintf(w, "Model display name: %v\n", model.GetDisplayName())
	fmt.Fprintf(w, "Model create time:\n")
	fmt.Fprintf(w, "\tseconds: %v\n", model.GetCreateTime().GetSeconds())
	fmt.Fprintf(w, "\tnanos: %v\n", model.GetCreateTime().GetNanos())
	fmt.Fprintf(w, "Model deployment state: %v\n", deploymentState)

	return nil
}

Java

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.Model;
import com.google.cloud.automl.v1.ModelName;
import com.google.protobuf.Timestamp;
import java.io.IOException;

class GetModel {

  static void getModel() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    getModel(projectId, modelId);
  }

  // Get a model
  static void getModel(String projectId, String modelId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);
      Model model = client.getModel(modelFullId);

      // Display the model information.
      System.out.format("Model name: %s%n", model.getName());
      // To get the model id, you have to parse it out of the `name` field. As models Ids are
      // required for other methods.
      // Name Format: `projects/{project_id}/locations/{location_id}/models/{model_id}`
      String[] names = model.getName().split("/");
      String retrievedModelId = names[names.length - 1];
      System.out.format("Model id: %s%n", retrievedModelId);
      System.out.format("Model display name: %s%n", model.getDisplayName());
      System.out.println("Model create time:");
      Timestamp createdTime = model.getCreateTime();
      System.out.format("\tseconds: %s%n", createdTime.getSeconds());
      System.out.format("\tnanos: %s%n", createdTime.getNanos());
      System.out.format("Model deployment state: %s%n", model.getDeploymentState());
    }
  }
}

Node.js

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function getModel() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
  };

  const [response] = await client.getModel(request);

  console.log(`Model name: ${response.name}`);
  console.log(
    `Model id: ${
      response.name.split('/')[response.name.split('/').length - 1]
    }`
  );
  console.log(`Model display name: ${response.displayName}`);
  console.log('Model create time');
  console.log(`\tseconds ${response.createTime.seconds}`);
  console.log(`\tnanos ${response.createTime.nanos / 1e9}`);
  console.log(`Model deployment state: ${response.deploymentState}`);
}

getModel();

PHP

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

use Google\Cloud\AutoMl\V1\AutoMlClient;
use Google\Cloud\AutoMl\V1\Model\DeploymentState;

/** Uncomment and populate these variables in your code */
// $projectId = '[Google Cloud Project ID]';
// $location = 'us-central1';
// $modelId = 'my_model_id_123';

$client = new AutoMlClient();

try {
    // get full path of model
    $formattedName = $client->modelName(
        $projectId,
        $location,
        $modelId
    );

    $model = $client->getModel($formattedName);

    // retrieve deployment state
    if ($model->getDeploymentState() == DeploymentState::DEPLOYED) {
        $deployment_state = 'deployed';
    } else {
        $deployment_state = 'undeployed';
    }

    // display model information
    $splitName = explode('/', $model->getName());
    printf('Model name: %s' . PHP_EOL, $model->getName());
    printf('Model id: %s' . PHP_EOL, end($splitName));
    printf('Model display name: %s' . PHP_EOL, $model->getDisplayName());
    printf('Model create time' . PHP_EOL);
    printf('seconds: %d' . PHP_EOL, $model->getCreateTime()->getSeconds());
    printf('nanos : %d' . PHP_EOL, $model->getCreateTime()->getNanos());
    printf('Model deployment state: %s' . PHP_EOL, $deployment_state);
} finally {
    $client->close();
}

Python

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)
model = client.get_model(model_full_id)

# Retrieve deployment state.
if model.deployment_state == automl.enums.Model.DeploymentState.DEPLOYED:
    deployment_state = "deployed"
else:
    deployment_state = "undeployed"

# Display the model information.
print("Model name: {}".format(model.name))
print("Model id: {}".format(model.name.split("/")[-1]))
print("Model display name: {}".format(model.display_name))
print("Model create time:")
print("\tseconds: {}".format(model.create_time.seconds))
print("\tnanos: {}".format(model.create_time.nanos))
print("Model deployment state: {}".format(deployment_state))

Ruby

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

require "google/cloud/automl"

project_id = "YOUR_PROJECT_ID"
model_id = "YOUR_MODEL_ID"

client = Google::Cloud::AutoML.auto_ml

# Get the full path of the model.
model_full_id = client.model_path project: project_id,
                                  location: "us-central1",
                                  model: model_id

model = client.get_model name: model_full_id

# Retrieve deployment state.
deployment_state = if model.deployment_state == :DEPLOYED
                     "deployed"
                   else
                     "undeployed"
                   end

# Display the model information.
puts "Model name: #{model.name}"
puts "Model id: #{model.name.split('/').last}"
puts "Model display name: #{model.display_name}"
puts "Model create time: #{model.create_time.to_time}"
puts "Model deployment state: #{deployment_state}"

モデルのノード番号の更新

トレーニング済みのモデルをデプロイした後に、トラフィック量に応じて、モデルがデプロイされるノードの数を更新できます。たとえば、このような操作は 1 秒あたりのクエリ数(QPS)が予想より多い場合などに行います。

モデルのデプロイを解除しなくても、ノード番号を変更できます。デプロイを更新すると、配信された予測トラフィックを中断せずにノード番号が変更されます。

ウェブ UI

  1. Vision Dashboard を開き、左側のナビゲーション バーで電球アイコンのある [モデル] タブを選択して、使用可能なモデルを表示します。

    別のプロジェクトのモデルを表示するには、タイトルバーの右上にあるプルダウン リストからプロジェクトを選択します。

  2. トレーニング済みでデプロイされているモデルを選択します。
  3. タイトルバーのすぐ下にある [テストと使用] タブを選択します。
  4. ページ上部のボックスに、「モデルはデプロイされているため、オンライン予測リクエストに使用できます。」というメッセージが表示されます。このテキストの隣にある [デプロイを更新] オプションを選択します。

    [デプロイを更新] ボタンの画像
  5. [デプロイの更新] ウィンドウが開きます。モデルをデプロイする新しいノード番号をリストから選択します。ノード番号と一緒に 1 秒あたりの予測クエリ数(概算)が表示されます。[デプロイの更新] ポップアップ ウィンドウの画像
  6. リストから新しいノード番号を選択したら、[デプロイを更新] を選択して、モデルがデプロイされているノード番号を更新します。

    新しいノード番号を選択した後の [デプロイの更新] ウィンドウ
  7. [テストと使用] ウィンドウに戻ります。テキスト ボックスに「モデルをデプロイしています...」が表示されます。 モデルのデプロイ
  8. 新しいノード番号にモデルが正常にデプロイされると、プロジェクトに関連付けられたアドレスにメールが届きます。

REST とコマンドライン

モデルのデプロイに最初に使用した際と同じ方法で、デプロイ済みモデルのノード番号を変更します。

後述のリクエストのデータを使用する前に、次のように置き換えます。

  • project-id: GCP プロジェクト ID
  • model-id: モデルを作成したときにレスポンスで返されたモデルの ID。この ID は、モデルの名前の最後の要素です。例:
    • モデル名: projects/project-id/locations/location-id/models/IOD4412217016962778756
    • モデル ID: IOD4412217016962778756

フィールドの考慮事項:

  • nodeCount - モデルをデプロイするノードの数。値は 1~100 にする必要があります(両端を含む)。ノードはマシンリソースの抽象化で、モデルの qps_per_node で指定された 1 秒あたりのオンライン予測クエリ数(QPS)を処理できます。

HTTP メソッドと URL:

POST https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id:deploy

JSON 本文のリクエスト:

{
  "imageClassificationModelDeploymentMetadata": {
    "nodeCount": 2
  }
}

リクエストを送信するには、次のいずれかのオプションを選択します。

curl

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id:deploy

PowerShell

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id:deploy" | Select-Object -Expand Content

出力は次のようになります。オペレーション ID を使用して、タスクのステータスを取得できます。例については、長時間実行オペレーションによる作業をご覧ください。

{
  "name": "projects/project-id/locations/us-central1/operations/operation-id",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2019-08-07T22:00:20.692109Z",
    "updateTime": "2019-08-07T22:00:20.692109Z",
    "deployModelDetails": {}
  }
}

次の HTTP メソッドと URL を使用すると、オペレーションのステータスを取得できます。

GET https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/operations/operation-id

終了したオペレーションのステータスは、次のようになります。

{
  "name": "projects/project-id/locations/us-central1/operations/operation-id",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2019-06-21T16:47:21.704674Z",
    "updateTime": "2019-06-21T17:01:00.802505Z",
    "deployModelDetails": {}
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.protobuf.Empty"
  }
}

Go

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	automlpb "google.golang.org/genproto/googleapis/cloud/automl/v1"
)

// visionClassificationDeployModelWithNodeCount deploys a model with node count.
func visionClassificationDeployModelWithNodeCount(w io.Writer, projectID string, location string, modelID string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// modelID := "ICN123456789..."

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	req := &automlpb.DeployModelRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/models/%s", projectID, location, modelID),
		ModelDeploymentMetadata: &automlpb.DeployModelRequest_ImageClassificationModelDeploymentMetadata{
			ImageClassificationModelDeploymentMetadata: &automlpb.ImageClassificationModelDeploymentMetadata{
				NodeCount: 2,
			},
		},
	}

	op, err := client.DeployModel(ctx, req)
	if err != nil {
		return fmt.Errorf("DeployModel: %v", err)
	}
	fmt.Fprintf(w, "Processing operation name: %q\n", op.Name())

	if err := op.Wait(ctx); err != nil {
		return fmt.Errorf("Wait: %v", err)
	}

	fmt.Fprintf(w, "Model deployed.\n")

	return nil
}

Java

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.DeployModelRequest;
import com.google.cloud.automl.v1.ImageClassificationModelDeploymentMetadata;
import com.google.cloud.automl.v1.ModelName;
import com.google.cloud.automl.v1.OperationMetadata;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class VisionClassificationDeployModelNodeCount {

  static void visionClassificationDeployModelNodeCount()
      throws InterruptedException, ExecutionException, IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    visionClassificationDeployModelNodeCount(projectId, modelId);
  }

  // Deploy a model for prediction with a specified node count (can be used to redeploy a model)
  static void visionClassificationDeployModelNodeCount(String projectId, String modelId)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);
      ImageClassificationModelDeploymentMetadata metadata =
          ImageClassificationModelDeploymentMetadata.newBuilder().setNodeCount(2).build();
      DeployModelRequest request =
          DeployModelRequest.newBuilder()
              .setName(modelFullId.toString())
              .setImageClassificationModelDeploymentMetadata(metadata)
              .build();
      OperationFuture<Empty, OperationMetadata> future = client.deployModelAsync(request);

      future.get();
      System.out.println("Model deployment finished");
    }
  }
}

Node.js

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function deployModelWithNodeCount() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
    imageClassificationModelDeploymentMetadata: {
      nodeCount: 2,
    },
  };

  const [operation] = await client.deployModel(request);

  // Wait for operation to complete.
  const [response] = await operation.promise();
  console.log(`Model deployment finished. ${response}`);
}

deployModelWithNodeCount();

PHP

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

use Google\Cloud\AutoMl\V1\AutoMlClient;
use Google\Cloud\AutoMl\V1\ImageClassificationModelDeploymentMetadata;

/** Uncomment and populate these variables in your code */
// $projectId = '[Google Cloud Project ID]';
// $location = 'us-central1';
// $modelId = 'my_model_id_123';

$client = new AutoMlClient();

try {
    // get full path of model
    $formattedName = $client->modelName(
        $projectId,
        $location,
        $modelId
    );

    // set prediction node count
    $metadata = (new ImageClassificationModelDeploymentMetadata())
        ->setNodeCount(2);
    $args = ['imageClassificationModelDeploymentMetadata' => $metadata];

    $operationResponse = $client->deployModel($formattedName, $args);
    $operationResponse->pollUntilComplete();
    if ($operationResponse->operationSucceeded()) {
        $result = $operationResponse->getResult();
        printf('Model deployed.' . PHP_EOL);
    } else {
        $error = $operationResponse->getError();
        // handleError($error)
    }
} finally {
    $client->close();
}

Python

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)

# node count determines the number of nodes to deploy the model on.
# https://cloud.google.com/automl/docs/reference/rpc/google.cloud.automl.v1#imageclassificationmodeldeploymentmetadata
metadata = automl.ImageClassificationModelDeploymentMetadata(
    node_count=2
)

request = automl.DeployModelRequest(
    name=model_full_id,
    image_classification_model_deployment_metadata=metadata
)
response = client.deploy_model(request=request)

print("Model deployment finished. {}".format(response.result()))

Ruby

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

require "google/cloud/automl"

project_id = "YOUR_PROJECT_ID"
model_id = "YOUR_MODEL_ID"

client = Google::Cloud::AutoML.auto_ml

# Get the full path of the model.
model_full_id = client.model_path project: project_id,
                                  location: "us-central1",
                                  model: model_id
metadata = { node_count: 2 }

operation = client.deploy_model name: model_full_id,
                                mage_classification_model_deployment_metadata: metadata

# Wait until the long running operation is done
operation.wait_until_done!

puts "Model deployment finished."

モデルの削除

次の例では、モデルを削除します。

ウェブ UI

  1. Vision Dashboard の左側のナビゲーション メニューにある電球アイコンをクリックして、使用可能なモデルのリストを表示します。

  2. 削除する行の右端にあるその他メニューをクリックし、[モデルの削除] を選択します。

  3. 確認ダイアログ ボックスで [削除] をクリックします。

    モデルの削除

REST とコマンドライン

後述のリクエストのデータを使用する前に、次のように置き換えます。

  • project-id: GCP プロジェクト ID
  • model-id: モデルを作成したときにレスポンスで返されたモデルの ID。この ID は、モデルの名前の最後の要素です。例:
    • モデル名: projects/project-id/locations/location-id/models/IOD4412217016962778756
    • モデル ID: IOD4412217016962778756

HTTP メソッドと URL:

DELETE https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id

リクエストを送信するには、次のいずれかのオプションを選択します。

curl

次のコマンドを実行します。

curl -X DELETE \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id

PowerShell

次のコマンドを実行します。

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id" | Select-Object -Expand Content

出力は次のようになります。オペレーション ID を使用して、タスクのステータスを取得できます。例については、長時間実行オペレーションによる作業をご覧ください。

{
  "name": "projects/project-id/locations/us-central1/operations/operation-id",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2018-11-01T15:59:36.196506Z",
    "updateTime": "2018-11-01T15:59:36.196506Z",
    "deleteDetails": {}
  }
}

Go

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	automlpb "google.golang.org/genproto/googleapis/cloud/automl/v1"
)

// deleteModel deletes a model.
func deleteModel(w io.Writer, projectID string, location string, modelID string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// modelID := "TRL123456789..."

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	req := &automlpb.DeleteModelRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/models/%s", projectID, location, modelID),
	}

	op, err := client.DeleteModel(ctx, req)
	if err != nil {
		return fmt.Errorf("DeleteModel: %v", err)
	}
	fmt.Fprintf(w, "Processing operation name: %q\n", op.Name())

	if err := op.Wait(ctx); err != nil {
		return fmt.Errorf("Wait: %v", err)
	}

	fmt.Fprintf(w, "Model deleted.\n")

	return nil
}

Java

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.ModelName;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class DeleteModel {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    deleteModel(projectId, modelId);
  }

  // Delete a model
  static void deleteModel(String projectId, String modelId)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);

      // Delete a model.
      Empty response = client.deleteModelAsync(modelFullId).get();

      System.out.println("Model deletion started...");
      System.out.println(String.format("Model deleted. %s", response));
    }
  }
}

Node.js

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function deleteModel() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
  };

  const [response] = await client.deleteModel(request);
  console.log(`Model deleted: ${response}`);
}

deleteModel();

PHP

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

use Google\Cloud\AutoMl\V1\AutoMlClient;

/** Uncomment and populate these variables in your code */
// $projectId = '[Google Cloud Project ID]';
// $location = 'us-central1';
// $modelId = 'my_model_id_123';

$client = new AutoMlClient();

try {
    // get full path of model
    $formattedName = $client->modelName(
        $projectId,
        $location,
        $modelId
    );

    $operationResponse = $client->deleteModel($formattedName);
    $operationResponse->pollUntilComplete();
    if ($operationResponse->operationSucceeded()) {
        $result = $operationResponse->getResult();
        printf('Model deleted.' . PHP_EOL);
    } else {
        $error = $operationResponse->getError();
        // handleError($error)
    }
} finally {
    $client->close();
}

Python

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)
response = client.delete_model(model_full_id)

print("Model deleted. {}".format(response.result()))

Ruby

このサンプルを試す前に、クライアント ライブラリのページのこの言語の手順に従って設定を行ってください。

require "google/cloud/automl"

project_id = "YOUR_PROJECT_ID"
model_id = "YOUR_MODEL_ID"

client = Google::Cloud::AutoML.auto_ml

# Get the full path of the dataset
model_full_id = client.model_path project: project_id,
                                  location: "us-central1",
                                  model: model_id

operation = client.delete_model name: model_full_id

# Wait until the long running operation is done
operation.wait_until_done!

if operation.error?
  puts "Model was not deleted. #{operation.error}"
else
  puts "Model deleted."
end