Mantieni tutto organizzato con le raccolte Salva e classifica i contenuti in base alle tue preferenze.

Gestione dei modelli

Un modello viene addestrato utilizzando un set di dati preparato che fornisci. AutoML Video Intelligence Classification utilizza gli elementi del tuo set di dati per addestrare, testare e valutare le prestazioni del modello. Quindi, devi esaminare i risultati, modificare il set di dati di addestramento secondo le necessità e addestrare un nuovo modello utilizzando il set di dati migliorato.

L'addestramento di un modello può richiedere diverse ore. L'API AutoML consente di controllare lo stato dell'addestramento.

Poiché AutoML Video Intelligence Classification crea un nuovo modello ogni volta che inizi l'addestramento, il progetto potrebbe includere numerosi modelli. Puoi ottenere un elenco dei modelli del tuo progetto e eliminare i modelli che non ti servono più.

La durata massima di un modello è di due anni. Per continuare a classificare i contenuti dopo questo periodo di tempo, devi creare e addestrare un nuovo modello.

Utilizzo di curl o PowerShell

Per semplificare l'esecuzione degli esempi curl (o PowerShell) in questo argomento, imposta la variabile di ambiente seguente. Sostituisci project-id con il nome del tuo progetto GCP.

export PROJECT_ID="project-id"

Addestramento dei modelli

Quando disponi di un set di dati con un set completo di elementi di addestramento etichettati, puoi creare e addestrare il modello.

UI web

  1. Apri l'UI video AutoML e vai alla pagina Set di dati.

    Pagina dei set di dati in Google Cloud Console
  2. Seleziona il set di dati da utilizzare per addestrare il modello.

    Il nome visualizzato del set di dati selezionato compare nella barra del titolo e la pagina elenca i singoli elementi nel set di dati insieme alle relative etichette.

    Scheda Video con due video mostrati
  3. Dopo aver esaminato il set di dati, fai clic sulla scheda Addestra sotto la barra del titolo.

    La pagina di addestramento fornisce un'analisi di base del tuo set di dati e ti indica se è appropriata per l'addestramento. Se AutoML Video suggerisce delle modifiche, valuta la possibilità di tornare alla pagina Video e di aggiungere elementi o etichette.

  4. Quando il set di dati è pronto, fai clic su Inizia addestramento per creare un nuovo modello o Addestra nuovo modello se vuoi creare un modello aggiuntivo.

REST &AM; LINEA CMD

Prima di utilizzare i dati della richiesta, effettua le seguenti sostituzioni:

  • dataset-id: l'ID è l'ultimo elemento del nome del set di dati. Ad esempio, se il nome del tuo set di dati è projects/434039606874/locations/us-central1/datasets/VCN3104518874390609379, l'ID del tuo set di dati è VCN3104518874390609379.
  • Nota:
    • project-number: numero del progetto
    • location-id: la regione Cloud in cui deve avvenire l'annotazione. Le regioni cloud supportate sono: us-east1, us-west1, europe-west1, asia-east1. Se non viene specificata alcuna regione, verrà determinata una regione in base alla posizione del file video.

Metodo HTTP e URL:

POST https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/models

Corpo JSON richiesta:

{
  "displayName": "test_model",
  "dataset_id": "dataset-id",
  "videoClassificationModelMetadata": {}
}

Per inviare la richiesta, scegli una delle seguenti opzioni:

ricciolo

Salva il corpo della richiesta in un file denominato request.json ed esegui questo comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth application-default print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/models"

PowerShell

Salva il corpo della richiesta in un file denominato request.json ed esegui questo comando:

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/models" | Select-Object -Expand Content
operation-id viene fornito nella risposta all'avvio dell'operazione, ad esempio VCN123...
{
  "name": "projects/project-number/locations/location-id/operations/operation-id",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1beta1.OperationMetadata",
    "progressPercentage": 100,
    "createTime": "2020-02-27T01:56:28.395640Z",
    "updateTime": "2020-02-27T02:04:12.336070Z"
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.cloud.automl.v1beta1.Model",
    "name": "projects/project-number/locations/location-id/models/operation-id",
    "createTime": "2020-02-27T02:00:22.329970Z",
    "videoClassificationModelMetadata": {
      "trainBudget": "1",
      "trainCost": "1",
      "stopReason": "BUDGET_REACHED"
    },
    "displayName": "a_98487760535e48319dd204e6394670"
  }
}

Java

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1beta1.AutoMlClient;
import com.google.cloud.automl.v1beta1.LocationName;
import com.google.cloud.automl.v1beta1.Model;
import com.google.cloud.automl.v1beta1.OperationMetadata;
import com.google.cloud.automl.v1beta1.VideoClassificationModelMetadata;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class VideoClassificationCreateModel {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    String displayName = "YOUR_DATASET_NAME";
    createModel(projectId, datasetId, displayName);
  }

  // Create a model
  static void createModel(String projectId, String datasetId, String displayName)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // A resource that represents Google Cloud Platform location.
      LocationName projectLocation = LocationName.of(projectId, "us-central1");
      // Set model metadata.
      VideoClassificationModelMetadata metadata =
          VideoClassificationModelMetadata.newBuilder().build();
      Model model =
          Model.newBuilder()
              .setDisplayName(displayName)
              .setDatasetId(datasetId)
              .setVideoClassificationModelMetadata(metadata)
              .build();

      // Create a model with the model metadata in the region.
      OperationFuture<Model, OperationMetadata> future =
          client.createModelAsync(projectLocation, model);
      // OperationFuture.get() will block until the model is created, which may take several hours.
      // You can use OperationFuture.getInitialFuture to get a future representing the initial
      // response to the request, which contains information while the operation is in progress.
      System.out.format("Training operation name: %s%n", future.getInitialFuture().get().getName());
      System.out.println("Training started...");
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const dataset_id = 'YOUR_DATASET_ID';
// const displayName = 'YOUR_DISPLAY_NAME';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;

// Instantiates a client
const client = new AutoMlClient();

async function createModel() {
  // Construct request
  const request = {
    parent: client.locationPath(projectId, location),
    model: {
      displayName: displayName,
      datasetId: datasetId,
      videoClassificationModelMetadata: {},
    },
  };

  // Don't wait for the LRO
  const [operation] = await client.createModel(request);
  console.log(`Training started... ${operation}`);
  console.log(`Training operation name: ${operation.name}`);
}

createModel();

Python

from google.cloud import automl_v1beta1 as automl

def create_model(
    project_id="YOUR_PROJECT_ID",
    dataset_id="YOUR_DATASET_ID",
    display_name="your_models_display_name",
):
    """Create a automl video classification model."""
    client = automl.AutoMlClient()

    # A resource that represents Google Cloud Platform location.
    project_location = f"projects/{project_id}/locations/us-central1"
    # Leave model unset to use the default base model provided by Google
    metadata = automl.VideoClassificationModelMetadata()
    model = automl.Model(
        display_name=display_name,
        dataset_id=dataset_id,
        video_classification_model_metadata=metadata,
    )

    # Create a model with the model metadata in the region.
    response = client.create_model(parent=project_location, model=model)

    print("Training operation name: {}".format(response.operation.name))
    print("Training started...")

Recupero delle informazioni su un modello

Una volta completato l'addestramento, puoi ricevere informazioni sul modello appena creato.

Gli esempi in questa sezione restituiscono i metadati di base su un modello. Per informazioni dettagliate sull'accuratezza e sull'idoneità di un modello, consulta la sezione Valutazione dei modelli.

UI web

  1. Vai alla pagina Modelli nell'interfaccia utente video AutoML.

    Pagina Modelli con un modello visualizzato
  2. Fai clic sul nome del modello da visualizzare.

REST &AM; LINEA CMD

Prima di utilizzare i dati della richiesta, effettua le seguenti sostituzioni:

  • model-name: nome completo del modello fornito dalla risposta al momento della creazione. Il nome completo ha il formato: projects/project-number/locations/location-id/models/model-id
  • dataset-id: sostituisci con l'identificatore del set di dati (non il nome visualizzato). Ad esempio: VCN3940649673949184000

Metodo HTTP e URL:

GET https://automl.googleapis.com/v1beta1/model-name/modelEvaluations

Corpo JSON richiesta:

{
  "displayName": "test_model",
  "dataset_id": "dataset-id",
  "videoClassificationModelMetadata": {}
}

Per inviare la richiesta, espandi una delle seguenti opzioni:

Dovresti ricevere una risposta JSON simile alla seguente:

Java

import com.google.cloud.automl.v1beta1.AutoMlClient;
import com.google.cloud.automl.v1beta1.Model;
import com.google.cloud.automl.v1beta1.ModelName;
import io.grpc.StatusRuntimeException;
import java.io.IOException;

class GetModel {

  static void getModel() throws IOException, StatusRuntimeException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    getModel(projectId, modelId);
  }

  // Get a model
  static void getModel(String projectId, String modelId)
      throws IOException, StatusRuntimeException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);
      Model model = client.getModel(modelFullId);

      // Display the model information.
      System.out.format("Model name: %s%n", model.getName());
      // To get the model id, you have to parse it out of the `name` field. As models Ids are
      // required for other methods.
      // Name Format: `projects/{project_id}/locations/{location_id}/models/{model_id}`
      String[] names = model.getName().split("/");
      String retrievedModelId = names[names.length - 1];
      System.out.format("Model id: %s%n", retrievedModelId);
      System.out.format("Model display name: %s%n", model.getDisplayName());
      System.out.println("Model create time:");
      System.out.format("\tseconds: %s%n", model.getCreateTime().getSeconds());
      System.out.format("\tnanos: %s%n", model.getCreateTime().getNanos());
      System.out.format("Model deployment state: %s%n", model.getDeploymentState());
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;

// Instantiates a client
const client = new AutoMlClient();

async function getModel() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
  };

  const [response] = await client.getModel(request);

  console.log(`Model name: ${response.name}`);
  console.log(
    `Model id: ${
      response.name.split('/')[response.name.split('/').length - 1]
    }`
  );
  console.log(`Model display name: ${response.displayName}`);
  console.log('Model create time');
  console.log(`\tseconds ${response.createTime.seconds}`);
  console.log(`\tnanos ${response.createTime.nanos / 1e9}`);
  console.log(`Model deployment state: ${response.deploymentState}`);
}

getModel();

Python

from google.cloud import automl_v1beta1 as automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)
model = client.get_model(name=model_full_id)

# Retrieve deployment state.
if model.deployment_state == automl.Model.DeploymentState.DEPLOYED:
    deployment_state = "deployed"
else:
    deployment_state = "undeployed"

# Display the model information.
print("Model name: {}".format(model.name))
print("Model id: {}".format(model.name.split("/")[-1]))
print("Model display name: {}".format(model.display_name))
print("Model create time: {}".format(model.create_time))
print("Model deployment state: {}".format(deployment_state))

Elenco dei modelli

Un progetto può includere numerosi modelli. Questa sezione descrive come recuperare un elenco dei modelli disponibili per un progetto.

UI web

Vai alla pagina Modelli nell'interfaccia utente video AutoML per visualizzare i modelli nel tuo progetto.

Pagina dei modelli con un modello nell&#39;elenco

Per vedere i modelli di un progetto diverso, seleziona il progetto nell'elenco a discesa in alto a destra nella barra del titolo.

REST &AM; LINEA CMD

Prima di utilizzare i dati della richiesta, effettua le seguenti sostituzioni:

  • model-name: nome completo del modello fornito dalla risposta al momento della creazione. Il nome completo ha il formato: projects/project-number/locations/location-id/models
  • Nota:
    • project-number: numero del progetto
    • location-id: la regione Cloud in cui deve avvenire l'annotazione. Le regioni cloud supportate sono: us-east1, us-west1, europe-west1, asia-east1. Se non viene specificata alcuna regione, verrà determinata una regione in base alla posizione del file video.

Metodo HTTP e URL:

GET https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/models

Per inviare la richiesta, espandi una delle seguenti opzioni:

Dovresti ricevere una risposta JSON simile alla seguente:

Java

import com.google.cloud.automl.v1beta1.AutoMlClient;
import com.google.cloud.automl.v1beta1.ListModelsRequest;
import com.google.cloud.automl.v1beta1.LocationName;
import com.google.cloud.automl.v1beta1.Model;
import java.io.IOException;

class ListModels {

  static void listModels() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    listModels(projectId);
  }

  // List the models available in the specified location
  static void listModels(String projectId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // A resource that represents Google Cloud Platform location.
      LocationName projectLocation = LocationName.of(projectId, "us-central1");

      // Create list models request.
      ListModelsRequest listModelsRequest =
          ListModelsRequest.newBuilder()
              .setParent(projectLocation.toString())
              .setFilter("")
              .build();

      // List all the models available in the region by applying filter.
      System.out.println("List of models:");
      for (Model model : client.listModels(listModelsRequest).iterateAll()) {
        // Display the model information.
        System.out.format("Model name: %s%n", model.getName());
        // To get the model id, you have to parse it out of the `name` field. As models Ids are
        // required for other methods.
        // Name Format: `projects/{project_id}/locations/{location_id}/models/{model_id}`
        String[] names = model.getName().split("/");
        String retrievedModelId = names[names.length - 1];
        System.out.format("Model id: %s%n", retrievedModelId);
        System.out.format("Model display name: %s%n", model.getDisplayName());
        System.out.println("Model create time:");
        System.out.format("\tseconds: %s%n", model.getCreateTime().getSeconds());
        System.out.format("\tnanos: %s%n", model.getCreateTime().getNanos());
        System.out.format("Model deployment state: %s%n", model.getDeploymentState());
      }
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;

// Instantiates a client
const client = new AutoMlClient();

async function listModels() {
  // Construct request
  const request = {
    parent: client.locationPath(projectId, location),
    filter: 'translation_model_metadata:*',
  };

  const [response] = await client.listModels(request);

  console.log('List of models:');
  for (const model of response) {
    console.log(`Model name: ${model.name}`);
    console.log(`
      Model id: ${model.name.split('/')[model.name.split('/').length - 1]}`);
    console.log(`Model display name: ${model.displayName}`);
    console.log('Model create time');
    console.log(`\tseconds ${model.createTime.seconds}`);
    console.log(`\tnanos ${model.createTime.nanos / 1e9}`);
    console.log(`Model deployment state: ${model.deploymentState}`);
  }
}

listModels();

Python

from google.cloud import automl_v1beta1 as automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"

client = automl.AutoMlClient()
# A resource that represents Google Cloud Platform location.
project_location = f"projects/{project_id}/locations/us-central1"
request = automl.ListModelsRequest(parent=project_location, filter="")
response = client.list_models(request=request)

print("List of models:")
for model in response:
    # Display the model information.
    if (
        model.deployment_state
        == automl.Model.DeploymentState.DEPLOYED
    ):
        deployment_state = "deployed"
    else:
        deployment_state = "undeployed"

    print("Model name: {}".format(model.name))
    print("Model id: {}".format(model.name.split("/")[-1]))
    print("Model display name: {}".format(model.display_name))
    print("Model create time: {}".format(model.create_time))
    print("Model deployment state: {}".format(deployment_state))

Eliminazione di un modello

L'esempio seguente elimina un modello.

UI web

  1. Vai alla pagina Modelli nell'interfaccia utente video AutoML. Pagina Modelli con un modello visualizzato
  2. Fai clic sul menu con tre puntini all'estrema destra della riga che vuoi eliminare e seleziona Elimina.
  3. Fai clic su Conferma nella finestra di dialogo di conferma.

REST &AM; LINEA CMD

Prima di utilizzare i dati della richiesta, effettua le seguenti sostituzioni:

  • model-id: sostituisci con l'identificatore del tuo modello
  • Nota:
    • project-number: numero del progetto
    • location-id: la regione Cloud in cui deve avvenire l'annotazione. Le regioni cloud supportate sono: us-east1, us-west1, europe-west1, asia-east1. Se non viene specificata alcuna regione, verrà determinata una regione in base alla posizione del file video.

Metodo HTTP e URL:

DELETE https://automl.googleapis.com/v1beta1/projects/project-number/locations/test/models/model-id

Per inviare la richiesta, espandi una delle seguenti opzioni:

Dovresti ricevere una risposta JSON simile alla seguente:

Java

import com.google.cloud.automl.v1beta1.AutoMlClient;
import com.google.cloud.automl.v1beta1.ModelName;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class DeleteModel {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    deleteModel(projectId, modelId);
  }

  // Delete a model
  static void deleteModel(String projectId, String modelId)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);

      // Delete a model.
      Empty response = client.deleteModelAsync(modelFullId).get();

      System.out.println("Model deletion started...");
      System.out.println(String.format("Model deleted. %s", response));
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;

// Instantiates a client
const client = new AutoMlClient();

async function deleteModel() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
  };

  const [response] = await client.deleteModel(request);
  console.log(`Model deleted: ${response}`);
}

deleteModel();

Python

from google.cloud import automl_v1beta1 as automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)
response = client.delete_model(name=model_full_id)

print("Model deleted. {}".format(response.result()))